
NASA Contractor Report No. 185114

Film Annotation System
For A Space Experiment

MILETUS ASSOCIATES, INC.
Albuqueque, New Mexico

July 1989

Prepared for
National h n a u t i c s and Space Administration
Lawis Reeearda Center
Contract NAS 3-25055

~ n a s a - c ~ - i a s i I 4) F x n ANNOTATION SYSTEH FOE
B SPACE EXPEBIHENT [M i l e t u s A s s o c i a t e s)
124 p CSCL 14E

Uaclas
0224572

Table . of Contents

Paqe No .
1.) Summary ... 1-1

2.) Introduction .. 2-1

3.) Camera Modifications 3-1

4.) FAS Hardware Description 4-1

4.0 General 4-1
4.1 Microprocessor Support Circuitry 4-1
4.2 Real Time Clock 4-1
4.3 Camera Interface Circuitry 4-2
4.4 STD BUSS Interface 4-2

4.4.1 FAS Status Code to STD 4-3
4.4.2 FAS Interval Warning to STD 4-4
4.4.3 FAS Photo Confirmation Bit to STD 4-5
4.4.4 Data and Ready Ports 4-5

4.5 Communication Protocol 4-5

5.) FAS Software Description 5-1

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

General 5-1

STD CPU Camera Trigger Command 5-1
FAS CPU Reset Command 5-2
Read Hardware Frame Counter 5-2
Reset Hardware Frame Counter 5-2
Set FAS Annotation Mode 5-2
Send Last Photo "X" Switch Data to
STD BUSS CPU 5-3
Receive Text From STD BUSS CPU 5-3

FAS CPU Camera Trigger Enable/Disable 5-1

Set GMT Time 5-3
'IGo" Command To Start Clock 5-4
Set Intervalometer Parameters 5-4

Command to Start Photo Sequence 5-4
FAS Status Code to STD 5-4
Cancel Current Photo Sequence 5-5
Interval Pre-Warning Flag 5-5
Photo Confirmation to STD 5-5
Photo Count This Sequence 5-6
Perform FAS Communication Port Test 5-6
Request FAS Hardware Self Test 5-6
Report Annotation Mode to STD 5-6
Report Time Left to Next Scheduled Photo 5-7
Set Software Frame Counter 5-7

0 Go 11

PRECEDiNG PAGE BLANK MOT FILMED

iii

Table of Contents. cont'd .
Page No .

Appendix A . Test Procedure A-1

Table of Contents A-2

Appendix B . PASCAL Program Listing B-1

Table of Contents B-2
STD PASCAL Procedures B-3
STD PASCAL TEST Program B-45

Appendix C . Figures C-1

Table of Contents C-2
Figure 1 . FAS Card Block Diagram C-3
Figure 2 . FAS Camera Interface Diagram C-4

Figure 5 . Component Side of P.C. Board C-7
Figure 6 . Solder Side of P.C. Board C-7
Figure 7 . Test Set Up C-8

Figure 9 . Nikon F3 Front Cable Attachment ... C-9
Figure 10 . Nikon F3 Rear Cable Attachment C-9
Figure 11 . Nikon F3 Data Mask C-10

Figure 3 . STD to FAS Communication Diagram .. C-5
Figure 4 . FAS to STD Communication Diagram .. C-6

Figure 8 . Nikon F3 Camera (Front View) C-8

Figure 12 . RHA C-10

Appendix D . Drawings D-1

Cable Drawing. #3895
Schematic Drawing FAS Card. #3964
Assembly Drawing FAS Card. #3964

Appendix E . Acronym Definitions E-1

iV

Section 1
Summarv

The following document has been prepared to provide the user
with operating instructions for the Isothermal Dendritic Growth
Experiment (IDGE) Film Annotation System (FAS). This annotation
system is a microprocessor interface to a modified 35mm Nikon
camera.

This microprocessor system has been manufactured on a single
STD BUSS interface card. The interface card has been designed in
such a way as to allow it to be used in either a stand alone
application with minimum features or installed in an STD computer
with maximum features available.

If the FAS card is installed in an STD computer system it
has the ability to take commands from and communicate status
information to the STD computer. If the FAS card is set up in a
stand alone configuration, it will print time (starting from
zero), day (0-9), camera ID (0-3), and frame count (0 -255) .

The Nikon camera has been modified to print a single row of
up to 28 5x7 dot matrix characters across the bottom of the 35mm
frame. A single bar of seven LEDs and coherent glass fiber
bundle has been installed in the pressure plate of the film back
to accomplish this annotation. In addition, an optical encoder
has been installed in the motor driver to provide column demands
to the FAS card.

1-1

Section 2
Introduction

Miletus has designed a FAS for use by NASA on the Isothermal
! Dendritic Growth Experiment (IDGE). I
i

The systems capabilities include operation as a manual
controller of a 35mm camera under the direction of the main CPU,
controlling the STD BUSS, and operation as an intelligent
intervalometer precisely controlling the photo taking sequence.
In either case, all photos are annotated with alpha-numeric data
including GMT (to 0.01 seconds resolution), camera ID number,
frame count and text data derived from the STD BUSS CPU. The
system consists of three parts:

.) The Camera Modifications to add an LED printing
matrix and an optical encoder to detect film motion.

.) An intelligent STD BUSS peripheral card providing
an interface between the CPU controlling the STD
BUSS and the camera itself.

.) High level language, (Turbo Pascal) software
subroutines, (source code) to implement all
functions from within the main IDGE software.

Each of these items is discussed in detail in the following
sections.

2-1

Section 3
Camera Modifications

Miletus has developed an LED printing matrix consisting of a
linear array of seven LEDs and a coherent fiber optic bundle
installed in the pressure plate of a 35mm Camera. This allows
data to be printed directly on the film as each photo is taken.
The print technique is similar to that used in a dot-matrix
computer printer except that it is the media (film) instead of
the print head that moves. That is, the data is printed on the
film as the motor driver advances it to the next frame. Using
this method, it is possible to print any character that can be
defined by a 5x7 dot-matrix. Reliability is enhanced by using
such a simple matrix, (only eight wires are required). In this
system, 28 alpha-numeric digits are printed on each frame.

In addition to the LED matrix it is also necessary to
install an optical encoder to allow sensing of film motion. This
is done using an optical sensor designed for reflective sensing.
This device incorporates an infrared LED and a photo-transistor
in a single package. A disk is mounted (usually to the motor
drive main drive gear) in the camera to provide a surface upon
which the sensor can be focused. The disk consists of llspokes"
of silvered or flat black material such that pulses are generated
as the motor turns and the film is advanced.

The following table describes the sequence of events
occurring for one photograph and annotation operation:

FAS CPU CARD: ---
Send trigger to camera ---

FAS recognizes "X" switch
and freezes data for
annotation. ---

Annotation begins when
encoder pulses are
received, and finishes
when all data is printed. ---

Camera opens shutter and
sends "X" switch pulse

Camera finishes exposing
film, closes shutter and
begins transporting film. ---

Camera stops transporting
film and is ready for
next frame.

3-1

Miletus has performed modifications of this nature to many
different models of 35mm SLR Cameras while constantly aiming to
avoid interference with either the electro-mechanical operation
of the camera or the photo/optical capabilities. Since a non-
contact motion sensor is used there is no affect on the
mechanical operation of the camera. Also, since the LED printing
matrix is independent of the camera shutter and lens the
camera/lens do
the LED intensity settings affect the camera.

settings have no effect on the LED intensity nor

Note: Under normal operation the FAS CPU Card acts as an
intervalometer and, as such, is the primary source of camera
trigger pulses. However, the camera may also be triggered by STD
CPU or by the trigger on the camera itself. Consequently, the
FAS which
source of triggering is utilized. However, a cable waving change
must be made to enable annotation when triggering the camera with
its own shutter release control. This change involves removing
the wire from J3 pin 12 and connecting it to J3 pin 19.

Card has been designed to annotate the film no matter

Note: If the FAS card is utilized in the standalone mode,
jumper W1 must be connected to +5v. See Appendix D, drawing
#3594.

3-2

Section 4
FAS Hardware Description

4 .0 General

Each FAS card contains all the STD BUSS communication
capability, the data storage and time keeping functions, and the
camera interface and control circuitry required to annotate one
35mm SLR camera under the control of the STD BUSS CPU.

The hardware consists of the following parts:

a) Microprocessor and support circuitry (NSC800 microprocessor)
b) Real Time Clock (RTC) and crystal oscillator (ICM 7170)
c) Camera interface and control circuitry (PAL Device)
d) STD BUSS Interface and decoding logic (PAL Device)

4.1 Microprocessor Support Circuitry

The microprocessor and support circuitry consists
of an eight bit CPU with 2K bytes of RAM and 8K bytes of EPROM.
Erasable Programmable Logic Devices, (EPLD) are used to implement
the necessary memory and 1/0 decoding functions required to
operate the CPU. A hardware reset of the FAS CPU is available to
the STD BUSS CPU by writing to a dedicated STD BUSS 1/0 address.
Additionally, a watchdog timer is provided to initiate a FAS CPU
reset should certain critical 1/0 operations fail to be detected
within a certain allotted amount of time.

4 . 2 Real Time Clock (RTC) --
The RTC has a resolution of 0.01 second and uses a standard

crystal oscillator with a trimmer capacitor to adjust the
accuracy. Using this trimmer the oscillator is set to the exact
desired frequency (within the accuracy of our measuring
equipment; +1/2 PPM) at the operating temperature to be used.
The expectez frequency deviation should be less than +10 PPM over
the range (30 degrees C +lo) To maintain a drift of- under two
seconds per day only requrres an accuracy of - +23 PPM.
is also settable from the STD BUSS only.

The clock

Upon power up, the RTC is loaded with all zeros and starts
counting from there. It could be possible to use this feature as
an elapsed time counter for use on other projects at a later
date.

The ones of days are maintained by the FAS CPU. Upon power
up the ones of days are set to zero and may be set to a value
between 0 and 9 through the use of the STD CPU.

4-1

4.3 Camera Interface Circuitry

The camera interface circuitry allows the FAS CPU to
trigger the camera, take a picture, detect an "X" switch
closure from the camera, and (using the pulses provided by the
optical encoder installed in the camera motor driver), annotates
the film. The FAS circuitry allows the LED matrix intensity to
be adjusted for proper exposure. This is accomplished using wire
jumpers that can easily be changed in the field.

Additionally, this circuitry contains a hardware and
software frame counter. The hardware frame counter may only be
accessed by STD BUSS CPU. The software frame counter, however,
is accessed by both the FAS CPU and the STD CPU. This feature
ensures that the current frame count contained in the hardware
frame counter cannot be disturbed by the FAS CPU should a
malfunction occur. The hardware frame counter may be reset to
zero by the STD CPU. It should be noted that the hardware frame
count is used for reference only and the software frame count is
printed on the film.

The camera may be triggered by the STD BUSS CPU or the FAS
CPU; the STD BUSS CPU may disable the FAS CPU from performing
this function. This allows the STD BUSS CPU to take over camera
control and detect a problem on the FAS CPU Board.

The "X" switch is de-bounced for detection and used by the
FAS CPU to freeze data at the time the film is exposed. The LED
Head will then print this data as the film is advanced. This
signal is also provided as an output to the IDGE system flash
unit.

4 . 4 STD BUSS Interface --
The STD BUSS interface decoding is performed using an EPLD

in order to minimize board surface area used for this function.
Two "types" of STD BUSS ports exist on the FAS Board, those that
are independent of the FAS CPU and those used for control and
communication of the FAS CPU by the STD BUSS CPU.

The BUSS ports independent of the FAS CPU consists of the
following:

- FAS CPU HARD RESET (Write 00 to Port 108H)
- HARDWARE FRAME COUNTER RESET (Write 02 to Port 108H)
- READ HARDWARE FRAME COUNTER (Read from 107H)
- STD BUSS TRIGGER TO CAMERA (Write 0 4 to 108H)
- FAS CPU CAMERA TRIGGER ENABLE/DISABLE (Write 08 to 108H)

4-2

The BUSS ports used for control and communication of the FAS
CPU are:

- FAS Camera Interface STATUS to STD (Port 104H)
- FAS Interval warning to STD (Port 103H Bit 0)
- FAS PHOTO confirmation bit to STD (Port 102 Bit 0)
- DATA to FAS (from STD) (Port 101H)
- DATA to STD (from FAS) (Port 100H)
- FAS READY FOR DATA (Port 105H Bit 0)
- STD READY FOR DATA (Port 106H Bit 0)
4 . 4 . 1 FAS Camera Interface Status to STD

The FAS is c'apable of informing the STD CPU of
certain conditions. Some of these are derived from the
camera interface and some from the FAS CPU itself. A
brief description of each follows,

From the Camera Interface:

- Camera trigger received but no "X" switch detection.
This error will occur and be detected by the FAS CPU
during every photograph. However, this detection is
normal and due to the delay between the time the camera
is triggered by the FAS and the time the camera
actually takes the photo. This error is reported by
the FAS for a very brief time and will probably be
undetectable by the STD CPU, Consequently, the only
time this error should be interpreted as a failure is
when the error persists for a prolonged period of time
(longer than 500ms).

- "X" switch received but no encoder pulses detected.
This error is reported when the FAS detects an "X"
switch but does not detect encoder pulses. This error
is reported in the same manner as discussed above.

- Encoder pulses received but terminated prior to a
print complete. This error occurs when the FAS
receives an insufficient number of encoder pulses to
complete a print cycle. This error is also reported in
the same fashion as the previous two errors discussed.

From FAS CPU:

- Watchdog timer timeout occurred. Should the FAS CPU
be reset by the watchdog timer, this bit will inform
the STD BUSS CPU that this occurred, When the status
port is read onto the STD BUSS, this bit is reset. If
a failure occurs that causes continuous timeout resets,
this bit would continue to report each one.

4 - 3

- FAS EPROM Check Sum Pass/Fail.

- FAS RAM Test Pass/Fail.
- FAS CPU Self-Test Pass/Fail.

The three above items represent the results of the FAS
Card self test function described in Section 5.19.

- FAS CPU Annotation Mode Bits:

These bits represent the current annotation mode (A, B,
or C) as discussed in Section 4.6.

The eight bit port to be used for reporting these
status/error codes is allocated as follows:

(Port Address 104 Hex)

Bits 0-1: Camera Interface
00 = Camera Hardware OK
01 = Trigger sent but no "X" switch
10 = "X" switch but no encoder pulses
11 = Encoder pulses but no print complete

Bits 2-4: FAS Card Self Test
000 = AL1 tests pass
001 = EPROM check sum fail
010 = RAM check fail
100 = CPU check fail
(other codes would reflect multiple failures)

Bit 5: Time-out reset occurred flip flop

Bits 6-7: FAS Annotation Mode Bits
00 = Mode A
01 = Mode B
10 = Mode C
11 = Unused at this time

4 . 4 . 2 FAS Interval Warning to STD

A warning is issued to the STD CPU one second
before a trigger is sent to the camera. This warning
bit is removed when the camera is triggered.

Note: This warning is only reported for photo
intervals greater than one second.

4-4

4 . 4 . 3 Photo Confirmation Bit to STD

This bit is reset to a zero when an interval
warning is issued, when read by the STD CPU, or when a
camera trigger is issued, It is set to a one when a
print complete is detected. The presence of this bit
is therefore an indication that the requested photo was
taken and data annotation performed. A successful
photograph would be indicated by the confirmation bit
going high. If it doesn't, the status bits will
contain the failure code.

4 . 4 . 4 Data and Ready Ports

Data is transferred from one CPU to another
using four ports, two for data and two for handshake,
The data ports can be written to by one CPU and read
from by the other, The ready "ports" are actually a
flip-flop reflecting the status of the data port, It
is read by either CPU but is set or reset only under
specific conditions as described below.

When a data port is written to, the
corresponding ready bit is automatically set to a one.
The intended target of this data sees this and takes
the data. This action resets the ready bit to a zero
telling the sender to send another byte by writing to
that data port. This action can continue until all data
has been transferred.

(FAS Data to STD Port lOOH Read) (Data Ready FAS Port 106H Bit 0)
(STD Data to FAS Port lOlH Write) (Data Ready STD Port 105H Bit 0)

4 .5 Communication Protocol

The communication Protocol used on the STD BUSS to control
the FAS functions is similar to that used to control a computer
peripheral such as a printer. Each control function has an A S C I I
control character sequence assigned to it and the data blocks
transferred have a fixed format adhered to by both the STD BUSS
CPU and the FAS CPU.

The intent here is simple: To keep the hardware interface,
(number of 1/0 ports used on the STD BUSS) simple while not
limiting functionality. A l s o , as needs change functions can be
added by changing only the software and using existing
communication ports.

The Data Ready Flip-Flop implementation also allows for
relatively high-speed data communication without requiring
elaborate hardware timing circuitry.

4-5

Section 5
- FAS Software Description

5.0 General

The software used to implement the FAS functions
consists primarily of two elements. The firmware existing in the
EPROM on the FAS CPU Card itself and the Turbo Pascal procedures
supplied for inclusion into the larger IDGE software.

The firmware performs all functions required by the FAS CPU
Card hardware creating an intelligent camera control and
annotation system. This system is largely autonomous to the STD
BUSS CPU once the FAS CPU ha5 been given the data and control
commands necessary to perform the camera intervalometer and
annotation functions. The STD BUSS CPU can determine the status
and health of the FAS CPU at any time by reading certain ports as
discussed above. Should it be required to override the FAS CPU
Card's control of the camera, this is possible through the STD
BUSS.

The Turbo Pascal procedures are supplied with commented
source code to allow integration directly into the larger IDGE
Software.

These procedures allow the following control functions and
data transfer to take place.

5 . 1 -- FAS CPU Camera Trigger Enable/Disable

(Set Bit 3 of Port 108H to Enable)
(Reset Bit 3 of Port 108H to Disable)

This procedure allows the STD BUSS CPU to disconnect the FAS
CPU from the camera trigger circuitry. The hardware used to
implement this function is independent of the FAS CPU and allows
the STD BUSS to override the FAS camera control should a problem
develop during a mission.

5 . 2

(Set Bit 2 of Port 108H and Reset Bit 2 of Port 108H after 10ms)

-- STD CPU Camera Trigger Command

This causes the camera to trigger immediately and under
direct control of the STD BUSS CPU. This is available at all
times regardless of the state of the disconnect hardware
described above or the FAS CPU itself.

5-1

5.3 FAS CPU Reset Command

(Reset Bit 0 of Port 108H and Set Bit 0 of Port 108H after 10ms)

--

This causes a hardware reset of the CPU on the FAS card and
is available as a means of attempting recovery from a failure.

5.4 Read Hardware Frame Counter

(Read from Port 107H)

This procedure returns the eight bit contents of the frame
counter on the FAS Card. This count is a hardware function of
the camera interface circuitry and is not affected by the state
of the FAS CPU.

5.5 Reset Hardware Frame Counter

(Set Bit 1 of Port 108H and Reset Bit 1 of Port 108 after lms)

This function will clear the frame counter to zero under the
control of the STD BUSS CPU directly.

5.6 SET FAS Annotation - MODE

The FAS has three modes under which data annotation is
performed. These modes (A, B, and C) are briefly described
below.

(Write "^M" to Port lOlH followed by an ASCII "A", "B" , @,cmt)
- MODE A: In this mode all 28 digits to be annotated

onto the film are supplied by the STD BUSS CPU. The
characters can be any of the standard ASCII characters
defined by the ASCII 20 (hex) through 5F (hex), This
includes all uppercase letters, all numbers and most
punctuation symbols. The annotation is:

t = text tttttttttttttttttttttttttttt

- MODE B: In this mode the FAS CPU supplies camera ID,
frame number, and GMT. The STD BUSS CPU provides 16
characters of text The format is:

CFFFttttttttttttttttHHMMSSSS

C = Camera ID
FFF = Frame Number
t = Text
HH = Hours
MM = Minutes

5-2

I

SSSS = Seconds of 0.01s
- MODE C: In this mode the FAS CPU provides GMT and the

STD CPU will provide 19 text characters. The format
is: tttttttttttttttttttDHHMMSSSS

t = Text
D = Day (1's digit of day of month counter)
HH = Hours
MM = Minutes
SSSS = Seconds to 0.01s

The text data is sent using a separate procedure
described below. The procedure discussed here will
only SET the mode.

5.7 Send Last Photo 'X' Switch Data to STD BUSS CPU

(Write "AN" to Port l O l H and Read 28 bytes from Port 100H)

-- -

Each time a photo is taken the "X" switch is used to freeze
the data for use later to perform the annotation when the film is
advanced. This data is held in memory until the next photo is
taken. The STD BUSS CPU can request this data at any time up to
-01 seconds prior to the next photo interval. During this -01

second window the FAS CPU will not honor a request for data from
the last photo. Instead, the request is noted but not acted upon
until after the impending photo is taken. Therefore, in this
case, the data reported will reflect the photo just taken.

5.8 Receive Text from STD BUSS CPU

(Write "^O" to Port lOlH followed by 28 ASCII characters)

This procedure allows a string of character data to be sent
to the FAS CPU. The data is interpreted as text data to be
printed according to the current mode as described in section 5.6
above. If more characters are sent than needed, the extra data
is ignored.

5.9 Set GMT Time ---
To set clock: Write ""P" followed by 5 bytes of binary data

in the following format: day (0-91, hours (0-231, minutes (0-
59), seconds (0-591, hundreds of seconds (0-99).

To start clock running: Write "^G" to Port 101H.

Using this procedure the STD BUSS CPU can set the RTC on the
FAS Board. A string of data will define the current date and
time to be loaded into the clock, but the clock will not be
started until a separate "GO" command is sent. In this way more
than one FAS Card can be set to the same time.

5-3

5.10 "GO" Command - to Start Clock

(Write ""G" to Port 101H)

A s discussed above, this procedure will start the RTC
counting after time has been loaded.

5.11 - Set Intervalometer Parameters

Write ""Q" to Port lOlH followed by the number of photos (1
byte binary, 0-250). Next, send two bytes of binary (MSB first)
photo interval, 0-14400.

This allows the STD BUSS CPU to give the FAS CPU information
required to perform a photo sequence. This information includes
the cruantity of pictures to be taken and the time interval
between pictures. The quantity will range from 1 to 250 and the
time interval from 0.25 to 3600 seconds in increments of 0.25
seconds.

The accuracy of this interval is +0.01 second and the time
annotated onto the film is the time at-which the "X" switch was
received.

5.12 - "GO" Command - to Start Photo Sequence

(Write ""R" to Port 101)

This procedure causes the photo sequence to begin by taking
one picture immediately and the next photo one "time interval"
later and continuing until the entire "quantity" of pictures is
taken.

5.13 - FAS Camera Interface STATUS Code

Using this procedure the STD BUSS CPU is able to determine
the status and health of the FAS CPU and camera interface
circuitry by reading the FAS status bits from port 104H. This
port is a dedicated port assigned to a unique STD BUSS 1/0
address and is available to the STD BUSS CPU at any time,
independent of the FAS CPU. The FAS CPU will simply update the
data in this port as the status of the hardware changes, Some of
these status bits are only updated after a FAS self test command.
This is summarized below: See Section 4.4.1.

- Camera Error Code: (updated as camera status changes)
(Read from Port 104H)

a) Camera trigger sent but no "X" switch received.
b) "X" switch received but no encoder pulses received.
c) Encoder pulses received but terminated before a print

complete.

5-4

- FAS CPU Status Bits

a) Timeout reset has occurred:

This item is reported independent of the FAS CPU and
software. This will indicate a probable failure of the
FAS CPU and as such will only be indicating the
hardware attempting to reset the CPU and all hardware
with the exception of the hardware frame counter.

b) Self Test Result Bits:

- EPROM check sum verify/fail
- RAM test pass/fail
- CPU test pass/fail

(See Section 4.4.1 for error codes.)

These tests are performed upon power up and request,
(by STD CPU), and results are reported back.

5.14 Cancel Current Photo Sequence

(Write 'Ins" to Port 101H)

Using this procedure the STD BUSS CPU can stop the
current photo taking session at any time.

5.15 Interval Pre-Warning Flaq

(Read from Port 103H bit 0 only)

By reading this dedicated STD BUSS 1/0 port the STD BUSS CPU
is able to detect (one second ahead of time) when a photo is
about to be taken. See Sec t ion 4 . 4 . 2 .

5.16 Photo Confirmation to STD --
(Read from Port 102H bit 0 only)

By reading this dedicated STD BUSS 1/0 Port, the STD BUSS
CPU can determine if an expected nhoto was actually taken. This
port should be reset to a zero one quarter second prior to a
photo, when a nhoto is triggered, or when the port is read by the
STD CPU. This bit is set to a one if a photo is successfully
taken. If the nhoto is unsuccessful, the STD BUSS CPU should
read the camera status bits to determine the probable cause of
the failure. See section 4.4.1.

5-5

5.17 Photo Count This Sequence

(Write "^X" to Port lOlH and read 1 byte binary from 100H)

The FAS is capable of reporting to the STD BUSS CPU how many
nhotos of the current sequence have been taken. This count will
increment every time the camera is triggered, up to the total
quantity of photos required for the current sequence.

5.18 Perform FAS Communication -- Port Test -
(Write "^Y" to Port 101H)

This procedure invoke the test routines on the FAS board to
exercise all the communication hardware between the FAS and the
STD BUSS CPU's.

5.19 Request FAS - Hardware Self Test
(To perform for all tests, write "^T" to Port lOlH followed by an
ASCII A)

Using this procedure the STD BUSS CPU can request the FAS to
perform the following checks:

a) EPROM check/sum verify. (Write "^T" followed by an ASCII E
to Port 101H)

b) RAM test with all ones, all zeros, and alternating ones and
zeros. (Write "^T" followed by an ASCII R to Port 101H)

c) CPU self check routines. (Write followed by an ASCII C
to Port 101H)

The results of these tests are made available to the STD
BUSS CPU in the above mentioned STATUS port. (See sections
4.4.1 and 5.13.)

5.20 Report Annotation Mode to - STD
(Write an "^L" to Port lOlH and Read one byte of ASCII from Port
100H)

The STD BUSS CPU can ask the FAS CPU which mode the
annotator is currently in (A, B, or C). This software procedure
performs a request using the data/ready ports (STD to FAS) and
receives an answer using the data/ready ports (FAS to STD). The
FAS card status port, a dedicated STD BUSS 1/0 Port, also
contains this mode code.

5-6

5.21 Report Time Left to Next Scheduled Photo ----
(Write a 'rnV" to Port l O l H followed by two reads from Port 1 0 0 H)
(Read two bytes binary MSB first)

The STD BUSS CPU can access the intervalometer timer in the
FAS CPU by requesting this item. The FAS will return the number
of increments left until the next scheduled photo as a binary
number 0 to 14,400. This would represent the time left in .25
second increments, (i.e. 3600 1/4 second intervals = 14,400).

5.22 - Set Software Frame Counter

(Write ''AHr' to Port l O l H followed by one byte binary frame count
0-250 1

This procedure allows the STD CPU to set the software frame
counter to any value between 0 and 250.

5-7

1.0 INTRODUCTION

The following test procedure is meant to provide a means of

controller card (FAS) and camera. Each test outlined within this
procedure is designed to test a specific portion of the FAS
hardware as well as the command sequences associated with that
hardware.

I verifying the functional operation of the film annotation

These test procedures are not meant to be a means of trouble
shooting the FAS card but rather they are meant to provide
documentation as to the functionality of each FAS card. After
each FAS card has undergone preliminary testing and it is
believed to work properly it will be subjected to the test
procedures contained within this document to verify complete
functionality.

A-3

2.0 TEST SET-UP

For all of the test procedures outlined in this document it is
assumed that the person performing the tests has obtained the
software, hardware and test equipment outlined in the next two
sections. In addition, it is assumed the the individual executing
the test has already installed the FAS card in the STD computer,
has applied power, and has run the FASTEST-EXE test program
provided by Miletus Associates,

2.1) Hardware & Software: The following is a list of the hardware
necessary to perform the tests contained in this document:

1.
2.
3,
4.
5.
6 .
7.
8 .
9.
10 .
11 .
12,

Video monitor and keyboard
Prolog computer card # 7890A-05
Prolog computer card # 735OC-01
Prolog computer card # 7717-01
Prolog computer card # 7391A-01 & 7390-02
Prolog computer card cage
Prolog compatible power supply
FAS controller card
Modified 35mm camera
Camera connection cable, # 8-1094
FASTEST-EXE test program
Prolog extender card.

2.2) Test Equipment: The following is a list of test equipment
necessary to perform the tests contained in this test
specification:

1- Hewlett Packard logic analyzer model 1631D
(or equivalent machine capable of capturing
and analyzing the microprocessor BUSS cycles
of the National Semiconductor NSC-800 CPU
running at eight Mhz)

2. Tektronix 100 Mhz oscilloscope model 2236
(or equivalent)

3. Frequency Counter with a display accuracy of
10 PPM or better used to measure 1Hz clock
counter ticks (Tektronix Scope 2236 with
option 001 1

A-4

3.0 TEST PROCEDURES

3.1 TEST FAS CPU RESET COMMAND ----
SETUP: Issue the "F" command and select mode "A". Issue the ''M"
command, Note: the mode changes to "A" . Issue the "C" command.
Followed by the 'IM" again.

RESULT: After the mode is changed to "A" , a reset command will
restore the mode to ''B". The last "M" command will show Mode = B
to pass this test.

3.2 TEST FAS STATUS CODE ---
SETUP: Exit the FASSTD test program by pressing r l Z " . Turn off the
power to the STD computer and wait at least ten seconds, Next,
apply power to the STD computer and run the FASTEST test program.
Finally, issue the "M" command,

RESULT: After issuing the "M" command, the mode status should
equal "B", the card status should equal zero, and the camera
status should equal zero, If this is not the result this test has
failed.

3.3 PERFORM - FAS COMMUNICATION TEST -
SETUP: Issue the "R" command from the FASTEST program.

RESULT: After waiting at least four seconds note the FAS error
massage value located in the lower right-hand side of the
computer screen. If the returned error code equals zero the
communication port test has passed. Any other response
constitutes a communication port failure.

3.4 PERFORM FAS HARDWARE TEST - -
SETUP: Issue the ''S" command and select "A" as a response to the
computer prompt.

RESULT: After waiting at least five seconds issue the "M" command
to read the FAS status latch. If the FAS card error code result
equals zero the hardware test has passed. Any other response
constitutes a hardware failure.

3.5 - TEST - STD - CAMERA TRIGGER COMMAND
SETUP: Connect FAS camera cable and camera to the FAS camera
card, Apply power to the camera and Issue the "B" command.

RESULT: If the camera triggers once for each time the "B" command
is sent, the test has passed.

A-5

3 . 6 TEST HARDWARE FRAME COUNTER

SETUP: First, send the "D" command to read the contents of the
hardware frame counter. Next, issue the "B" command to trigger
the camera, Lastly, issue the "D" command a second time and note
the current count value. (Carefully repeat this test several
times to insure proper operation.)

RESULT: Each time the camera is triggered the frame count should
increase by one count and only one count. If after repeating
this test twenty times the frame count increases by exactly

--

twenty, then this test has been passed.

3 . 7 TEST HARDWARE FRAME COUNTER RESET

SETUP: Issue the "E" command followed by the I'D" command, If
returned value of the frame counter is zero then issue the
command followed by the "D" command.

--

RESULT: If after performing this test the frame counter value
one then this test has been passed.

3 . 8 TEST THE SEND DATA TO FAS COMMAND -------
SETUP: Type the "H" command and enter "ABCDEFGHIJKLMNOP" .
RESULT: After waiting at least two seconds, note the result
the FAS error code. If the error code is zero then this test
passed.

the
'I B I'

is

of
has

3 . 9 TEST THE SEND LAST 'IX" SWITCH DATA ------
SETUP: Send the "B" command followed by the "G" command.

RESULT: If the data received from the FAS is as follows, this
test has passed, "CFFFABCDEFGHIJKLMNOPHHMMSSSS"

C = Camera ID, FFF = Frame count, HHMMSSSS = Time

NOTE! Camera ID, Frame count, and Time are undefined at this
point in the test; therefore, it should not concern the operator
that these fields are meaningless. However, what is important is
that the text matches: "ABCDEFGHIJKLMNOP". (This data was entered
in step 3 . 8)

3.10 TEST THE ANNOTATION MODE COMMAND ---
SETUP: Issue the "F" command and enter "A" in response to the
computer prompt. Enter the "H" command and type in a unique
combination of data. Next, enter the "B" command to trigger
followed by the "G" command. Check the data that is returned from

A-6

1 the FAS and insure that it is identical to the data that was just
sent. Repeat this test with the exception of entering a "C" in

1 response to the computer prompt and realizing that the data
returned will be comprised of the text sent followed by day and
time data which at this point are undefined.

1

I

RESULT: If the data returned from the FAS is identical to the
data sent to the FAS this test has passed.

3.11 TEST FAS REAL TIME CLOCK -----
SETUP: Issue the "F" command and enter mode "C". Send the "I"
command and enter "123450000'' and press return. Next, issue the

command to start the clock. Finally, type the "Blr command
followed by the "G" command.
#I J V I

RESULT: Verify that the time returned is equal to the time sent
plus the time between the issuing of "J" command and the sending
of the "B" command. If it is found that the time is correct
within reasonable tolerances then this test has passed.

I 3.12 TEST FAS INTERVALOMETER

SETUP: First, setup the analyzer in the timer mode to start and
stop on a fetch from address OB77 hex. Second, Send the "K"
command and enter a request to take thirty pictures on an
interval of one (.25 seconds). Third, issue the "L" command to
start the nhoto sequence and verify that the camera is being

--- I

1

i triggered.

RESULT: Verify that the analyzer's measured time is 250 ms which
will constitute a passing of this test. 1
Note: If an analyzer is not available, a stop watch can be used I

1 I to give an approximate time. This test should actually be done
by the manufacturer and fine tuned to factory (manufacturer)
specifications. The stop watch will give a ball park time which
is all that is necessary since adjustments cannot be made at the
user level.

-

I

3.13 TEST THE CANCEL PHOTO SEQUENCE COMMAND

SETUP: Issue the "L" command and before the camera has completed
it's thirty photographs enter the "N" command.

RESULT: Observe whether the camera stops triggering promptly
after the "N" command is issued. If this behavior is observed
then this test has passed.

A-7

3.14 TEST THE INTERVAL PRE-WARNING FLAG ---
SETUP: Issue the "K" command and enter 250 photos at 16 intervals
(every 4 seconds). Issue the "L" followed by the "Y" command.

RESULT: When the time remaining until the next scheduled photo
counts down below 5, the interval pre-warning flag will change to
say "Photo Pending." When the count goes to zero, which is
usually not seen on the screen, the camera will click and the
test program reports a "Successful Photo Taken" message. If this

stop this test.
occurs, then the test has been passed. Issue the "N" and "Y" to

3.15 TEST THE PHOTO CONFORMATION BIT ---
NOTE: It is recommended that the following test be performed by
the manufacturer ONLY.

SETUP: Turn off the power. Disconnect jumper (W3) or take out
pin 25 of the camera Berg connector located at 53 on the FAS card
and after power up, issue the "Bo' command. Next, observe the
state of the photo confirmation, command "P'l . If the photo
confirmation status is "No Photo Taken" then turn off power and
reconnect the encoder pulses. Then turn on power and issue the
''B'' command a second time. This time a successful Dhoto
confirmation status should be observed.

RESULT: If the operator observes the above conditions this test
has passed. (Note: reconnect jumper (W3)

3.16 TEST THE PHOTO SEQUENCE COUNT ---
SETUP: Start the camera by taking a photo sequence and then issue
the "Q" command repeatedly.

RESULT: The operator should observe the sequence photo counter
"Q" to be incrementing. If this observation is made this test has
passed. Use command "N" to stop the photo sequence.

3.17 TEST THE REPORT ANNOTATION MODE COMMAND ---
SETUP: First issue the "F" command and respond "A" to the
computer prompt. Next, issue the "T" command followed by the "M"
command. Repeat for modes "B" and "C".

RESULT: If the annotation mode that is reported in response to
the "T" and "M" commands is "A", "B", "C" then this test has
passed.

A-0

3.18 TEST THE REPORT --- TIME TO NEXT PHOTO COMMAND

SETUP: Start the camera taking photos on two second intervals.
Next, issue the "U" command repeatedly and verify that the
time to next -hot0 count is decreasing.

RESULT: If it is found that the time to next photo count is
decreasing then this test has been passed. Use command "N" to
stop the nhoto sequence.

3.19 TEST PHOTO EXPOSURE TIMES --
NOTE: It is recommended that the following test be performed by
the manufacturer ONLY.

SETUP: Attach channel one of the oscilloscope to pin 60 or Test
Point One (TP1) of the PNT EPLD (U3). The exposure time "E" 16us,
has already been pre set by the jumper between pins 5 and 12 of
U4. Start a photo sequence. Make sure that the positive going
pulse width is approximately 16us.

RESULT: A 16us + 1 - 2us positive pulse width should be observed.

3.20 TEST REAL TIME CLOCK CALIBRATION ----
NOTE:
the manufacturer ONLY.

It is recommended that the following test be performed by

SETUP: Issue the "VI' command to set the FAS real time clock into
the 1Hz interrupt mode. After issuing this command the FAS will
remain in the 1Hz interrupt mode for three minutes or until any
other key is pressed. Next, connect the frequency counter to pin
22 of u9.

RESULT: Verify that the frequency measurement is 1HZ +/- 10 PPM.
However, the operator should not be concerned if the frequency
count jumps +/- 30 PPM due to the sampling time of the frequency
counter .
3.21 PERFORM FILM TEST

NOTE: It is recommended that the following test be performed by
the manufacturer ONLY.

--

SETUP: Load the camera with approximately thirty frames of film
and take photos with fixed data in all of the print modes.

RESULT: Insure that the annotated data appears correctly on the
film without any scratches caused by the annotation head. Also
insure that the camera is advancing film correctly.

A-9

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)
{ SR- 1 {Range checking off)
{SB+l (Boolean complete evaluation on)
{SS+) {Stack checking on)
{SI+) {I/O checking on)
(SN-1 {No numeric coprocessor)
{SM 65500,16384,655360) {Turbo 3 default stack and heap)

.

.
(* * * ***)
(*** FAS AND STD UNIT PROCEDURES * * *)
(*** REVISION 2.0 * * *)
(*** ***)
(* * *
(***
(***
(***
(***
(***
(* * * 9 DEC
(***
(***
(***

BY: TOM CAVALLI * * *)
JUNE 1988 ***)

LAST MODIFIED:13 MARCH 1989 ***)
FILENAME: FASSTD20.TPS ***)
COMPILES: FASSTD20.TPU ***)

* * *)
88: Load the FAS software frame count(VAR ***I

FAS ERROR CODE, NEW - FEAME - C~UNT :BYTE); ***I
wasadded: ***)

***)
(***14 DEC 88: Modified FAS Hardware Self Test to state***)
(*** when the test has succesfully finished. * * *)
(* * * ***)
(***16 DEC 88: Converted the FASSTD procedures into a ***)
(*** unit. The private GLOBAL variable, ***)
(* * * FAS TRIGGER ENABLE SAVE, allows those ***I
(*** procedures which set the FAS control ***)
(*** bits to function with out passing the ***)
(*** current trigger enabled/disabled value * * *)
(*** * * *)
.
.

B-3

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The following TURBO PASCAL (V5) procedures support the
operation of the Miletus Film Annotation System (FAS) camera
card.

There are twenty two procedure calls and various utility
procedures that will activate the FAS card. Each procedure
call contains the parameters necessary for correct
operation. These parameters provide the communication path
between the STD and FAS. A list of the these parameters can
be found the FASTEST.TP4 source code. For instance, an
error code parameter is passed between each procedure and
reports the error status. This error code should be checked
by the user's program to verify successful completion of the
called procedure. In PASCAL,
IF A FAS Error Has Occured(FAS - ERROR - CODE) is TRUE then the
called procedure has failed.

The user can NOT call any of the utility procedures

A FAS Error Occured
Get E&-or-Code-Number
Get-Error Code - Caller
FAS-Power-Up

which follow EXCEPT:

Upon power up The user must first call the Fas Power - Up
procedure which will initialize the FAS: the FZS
Annotation mode equals 'B', and the FAS camera trigger is
enabled.

the uses clause contains FASSTD2O so that a screen
menu program can test the FAS. Although
the FASTEST.TP5 program only displays the error code after
each procedure call, the user must perform an error code
check. * I

The FASTEST.TP5 test program serves as an example where

B-4

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

UNIT FASSTD20;
INTERFACE
uses crt; (* for the DELAY0 procedure *)

. TYPE DECLARATIONS .

TYPE
STRING 4 = STRING[4]; (*FOR THE COMMUNICATION TEST*)
STRING110 = STRING[lO]; (* FOR CONTROL CODE + GMT *)
STRING 9 = STRING[9]; (* FOR GMT 'DHHMMSSSS' *)
STRING-28 = STRING[28]; (* FOR TEXT ANNOTATION *)
STRING-29 - = STRING[29]; (* FOR CONTROL CODE + TEXT *)

B-5

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The following FUNCTIONS and PROCEDURES may be used*)
(* by the host program. *)

FUNCTION A - FAS Error - Occured(VAR FAS - ERROR - CODE : BYTE)
: BOOEEAN;

PROCEDURE Get - Error - Code - Number(VAR
FAS ERROR CODE : BYTE;

FAS - ERROR - NUMBER : BYTE);

-
VAR-

PROCEDURE Get - Error - Code - Caller(VAR
FAS ERROR - CODE : BYTE;

FAS - ERROR - CALLER : BYTE);
VAR-

PROCEDURE FAS - Power - Up(VAR
FAS - ERROR - CODE : BYTE);

PROCEDURE Set-FAS-Camera - Trigger Control(VAR
FAS ERROR CODE : BYTE;
FAS-TRIGGER - - ENABLE : BOOLEAN);

PROCEDURE STD - CPU - Trigger - Camera Command(VAR
: BYTE); FA^ - ERROR - CODE

PROCEDURE FAS - CPU-Reset - Command(VAR
FAS - ERROR - CODE : BYTE);

PROCEDURE Read - Hardware - Frame Counter(VAR
FAS ERROR CODE,
FAS-HARDWARE - - FRAME - COUNTER : BYTE);

PROCEDURE Reset-Hardware - Frame - Counter(VAR
FAS - ERROR - CODE : BYTE);

PROCEDURE Set - FAS - Annotation - Mode(VAR
FAS ERROR - CODE : BYTE;

NEW - FAS - ANNOTATION - MODE : CHAR);
VAR-

PROCEDURE Get - Last - Photo Data(VAR
FAS ERROR - CODE : BYTE;

LAST - PHOTO - - X SWITCH - DATA :
VAR-

STRING - 2 8) ;

PROCEDURE Send - Text - To-FAS(VAR
FAS ERROR - CODE : BYTE;

TEXT - - TO FAS : STRING - 2 8) ;
VAR-

PROCEDURE Set - GMT(VAR
B-6

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

FAS ERROR - CODE : BYTE;

NEW - GMT : STRING - 9);
VAR-

PROCEDURE Start - FAS - Clock(VAR
FAS - ERROR - CODE : BYTE);

PROCEDURE Set Intervalometer(VAR
FAS ERROR - CODE
VAR-

: BYTE;

NUMBER OF PHOTOS TO TAKE : BYTE;
VAR
INTERVAL BETWEEN PHOTOS : INTEGER);

- - - -

- -

PROCEDURE Start - Photo-Sequence(VAR
FAS - ERROR - CODE : BYTE);

PROCEDURE Get FAS - Status(VAR

PROCEDURE Cancel - Photo - Sequence(VAR-

FAS ERROR CODE,
FAS-STATUS CODE : BYTE);

FAS ERROR CODE : BYTE); - -
PROCEDURE Get - Photo - Pre - Warning Flag(VAR

FAS ERRBR - CODE : BYTE;

INTERVAL PRE WARNING FLAG : BOOLEAN);
VAR-

- - -
PROCEDURE Get Photo - Confirmation Flag(VAR

FAS ERROR - CODE : BYTE;

PHOTO - CONFIRMATION FLAG : BOOLEAN);
VAR-

PROCEDURE Get Photo Count(VAR -
FAS ERROR - CODE : BYTE;

NUMBER OF PHOTOS TAKEN : BYTE);
VAR-

- - -
PROCEDURE Perform - FAS - Communication - TestfVAR FAS ERROR CODE

:BYTE 17
PROCEDURE Perform FAS - Hardware Test(VAR -

FAS ERROR - CODE : BYTE;

FAS HARDWARE TEST : CHAR;

FAS HARDWARE TEST - FLAG : BOOLEAN);

VAR-

VAR-
-

- -
PROCEDURE Report - Annotation - Mode(VAR

FAS ERROR - CODE : BYTE;

REPORTED ANNOTATION MODE : CHAR);
VAR-

- -

I B-7

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

PROCEDURE Report - Time - To Next Photo(VAR
FAS-ERROR - CODE : BYTE;

REPORTED TIME TO NEXT PHOTO : INTEGER);
VAR-

- - - -
PROCEDURE Load - the - FAS - software-frame - count(VAR

FAS ERROR CODE,

:BYTE) ;
NEP-FRAME-COUNT - -

PROCEDURE FAS - Clock - Calibration(VAR
FAS - ERROR - CODE : BYTE);

B-8

(* Miletus Associates, Inc. STD to FAS Unit Procedures

(* The above PROCEDURES are implementated below. In
(* addition to all the required FAS PASCAL PROCEDURES
(* described in section 4.1 through 4.22, there are
(* private utility PROCEDURES which perform 1/0 between
(* the FAS and STD, and there is one private GLOBAL
(* variable, called FAS TRIGGER ENABLE SAVE, which allows
(* the host STD program-to no longer pass the
(* FAS TRIGGER ENABLE flag to every procedure which sets
(* the-FAS control bits.
(* PROCEDURE 4.1, Set FAS Camera Trigger Control,
(* enables/disables the FAE trigger a6d defines the value
(* of the private global variable.

IMPLEMENTATION

VAR
FAS - TRIGGER - ENABLE - SAVE : BOOLEAN;

*)

B-9

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The following twelve utility procedures perform the
necessary input and output between the FAS and the
Miletus FAS PASCAL PROCEDURES.

the function A FAS Error Occured(FAS ERROR CODE) to verify
that each proczdure performed without error. And, use the
two error decoding procedures, Get Error Code Number and
Get Error-Code-Caller to aid in writing an error recovery
rou'iine.

defining an address and data byte parameter. Valid FAS
addresses consists of the following:

The user is encouraged to use

The first two utility routines perform the 1/0 by

Address Use
$100 FAS data to STD read only
$101 STD data to FAS write only
$102 FAS photo confirmation read only
$103 FAS interval pre-warning read only
$104 FAS status read only
$105 Handshake read only
$106 no use
$107 Hardware frame counter read on ly
$108 Control bits write only

* I

DATA - READ := PORT[FAS - ADDRESS];

END ;

(**************** WRITES BYTE TO FAS DATA INPUT ***********)
PROCEDURE Write - Data - Byte - To-FAS(VAR

DATA - BYTE : BYTE);

BEGIN

PORT[$101] := DATA - BYTE;

END :

B-10

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The following three utilities are used for error
detection. The error code parameter is encoded to include
the called procedure and error number by using the first
two significant digits for the procedure numbered 00 thru
21. 1100" defines the power-up procedure. "01" thru "21"
defines the paragraph under section 4 which describes each
procedure. The units digit contains the error code which
goes as:

MEANING
0 No error has occured
1 The FAS is not ready to

receive data.
2 The FAS has not acknowledged the

receipt of the data just sent.
3 The FAS has data ready for the STD

before data was requested.
4 The FAS has no data for the STD

after data was requested.
5 Improper parameter format.
6 Invalid mode, test selection, or

7 FAS failed to send correct status
8 FAS failed to send correct data

FAS c ERROR - NUMBER

annotation text character.

Numbers 1, 2, 3, and 4 pertain mainly to the handshake bits
between the STD and FAS.
to hang-up and a RESET, FAS403.PAS, may be the only remedy
here. On numbers 5 and 6 read the comments of each procedure
to learn what the expected format, mode, test and text
should be. Finally numbers 7 and 8 explain where the
communication test has failed, FAS418.PAS.
*)

An unknown glich may cause the FAS

B-11

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(************* CHECKS IF A FAS ERROR OCCURED **************I
FUNCTION A - FAS Error - Occured(VAR FAS - ERROR - CODE : BYTE)

BEGIN
: BOOLEAN;

A - FAS - ERROR - OCCURED := FALSE
IF FAS - ERROR CODE = (FAS ERROR CODE DIV 10) * 10 THEN
ELSE

A - FAS - ERROR - OCCURED := TRUE;
END ;

(************* GETS THE FAS ERROR CODE NUMBER; 0 TO 9 *****I
PROCEDURE Get Error Code Number(VAR - - -

FAS ERROR - CODE
VAR-

: BYTE;

FAS - ERROR - NUMBER : BYTE);

((FZS ERROR CODE DIV 10)*10);

BEGIN
FAS ERROR NUMBER := FAS ERROR CODE - - - -

- -
END :

(************* GETS THE FAS ERROR CODE CALLER; 00 TO 21 ***)
PROCEDURE Get-Error-Code-Caller(VAR

FAS ERROR - CODE : BYTE;

FAS - ERROR - CALLER : BYTE);
VAR-

BEGIN
FAS - ERROR - CALLER := FAS - ERROR - CODE DIV 10;

END ;

B-12

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(************* CHECK THE FAS HANDSHAKE BITS ***************)
PROCEDURE FAS - Handshake - Test(VAR

HANDSHAKE MASK ; BYTE:
VAR
EXPECTED BYTE - VALUE : BYTE:
VAR
HANDSHAKE - READY : BOOLEAN):

-

-

CONST

VAR
HANDSHAKE - ADDRESS : INTEGER = $105;

HANDSHAKE BYTE : BYTE;
TRY - COUNTER : BYTE;

BEGIN
TRY COUNTER := 0;
HANESHAKE - BYTE := 255; (* to initialize the variable *)
REPEAT

BEGIN

Get - FAS - Hardware - Data(HANDSHAKE ADDRESS,
HANDSHAKE-BYTE);

HANDSHAKE - READY := (HANDSHAKE BYTE AND
HANDSHAKE-MASK

= EXPECTED-BYTE - - VALUE:
DELAY(23 * TRY COUNTER 1:

(* 1035ms maxymum delay *)
TRY - COUNTER := TRY - COUNTER + 1;

END ;
HANDSHAKE READY

(TRY-COUNTER >= 10);
- UNTIL

OR

END :

(************* CHECK IF THE FAS IS SENDING DATA ***********)
FUNCTION FAS - - Is Already - Sending - Data(VAR

FAS - ERROR - CODE :BYTE)
: BOOLEAN:

CONST
HANDSHAKE MASK ; BYTE = $01; (* 00000001 Do *)

HANDSHAKE - READY : BOOLEAN = FALSE:
EXPECTED BYTE VALUE : BYTE = 0; (* DO=O, DATA CLEAR*)

BEGIN
FAS - Handshake - Test(HANDSHAKE MASK,

FAS Is Already Sending Data := NOT HANDSHAKE - READY;

EXPECTED EYTE VALUE,
HANDSHAKE - REAEY) ;

IF GOT-HANDSHAKE - READY-
THEN

FAS - ERROR - CODE := FAS - ERROR - CODE + 3 ;

END :
B-13

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

BEGIN
:= DATA BYTE AND $07; (* DATA XXXXXXXX *)

(* $07 00000111 *)
- DATA BYTE

(* = oooooxxx *)
IF FAS TRIGGER ENABLE SAVE THEN - -

DATA - BYTE := DATA - BYTE +8; (* ADD 00001000 *)

PORT[$108] := DATA - BYTE; (* SEND OOOOXXXX *)

END ;

B-14

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* THIS PROCEDURE MUST BE CALLED UPON POWER UP *)
(* The FAS camera trigger will be enabled. *)
(* The FAS powers up in the 'B' annotation mode. * I

CONST
FAS POWER UP CODE : BYTE = $09; (* 00001001 *) HANDSHAKE-MASK : BYTE = $01; (* 00000001 Do *)

FAS ADDRESS : INTEGER=$100; (* READ SO Do=O *)
EXPECTED EYTE - VALUE : BYTE = 0; (* WANT Do=O * I

FAS-STATUS - - CODE - ADDRESS : INTEGER = $104;
VAR

TRY COUNTER : BYTE; (* FOR TIMEOUT *)

HANDSHAKE - READY : BOOLEAN; (* TRUE IF SO *)
DATA READ : BYTE; (* IGNORED *)

BEGIN
FAS ERROR CODE := 0; (* NO ERRORS YET *)
FACTRIGGER ENABLE - SAVE := TRUE; (*ALLOWS FAS CONTROL*)

(* INITIALIZES FAS CONTROL BITS *)
Set - FAS - Control - Bits(FAS - POWER - - UP CODE);

TRY-COUNTER- - := 0;

(* RESETS THE LATCH STATUS ON THE FAS *)
Get - FAS - Hardware - Data(FAS STATUS CODE - ADDRESS,

DATA - READ
(* RESETS AND VERIFIES Do=O FOR FAS HANDSHAKE *)

Get FAS Hardware Data(FAS ADDRESS, DATA READ);
FAS-Hanashake - - Tegt(HANDSHfiKE MASK,

-
EXPECTED BYTE VALUE,
HANDSHAKE - READY);

FAS-ERROR - - CODE := 3 ;
IF NOT HANDSHAKE READY THEN

END ;

B-15

(* Lletus Associates, Inc. STD to FAS Unit Procedures *)

CONST
HANDSHAKE MASK : BYTE = 2; (* AND BIT MASK *)

ZEROS : BYTE = 0; (*CLEAR FAS INPUT*)

HANDSHAKE - READY : BOOLEAN; (* TEST RESULTS *)

EXPECTED - BYTE - VALUE : BYTE = 0; (*D~=o, FAS IS READY*)

VAR

BEGIN
(* IS FAS READY TO RECEIVE DATA? *)

FAS - Handshake - Test(HANDSHAKE MASK,
EXPECTED EYTE VALUE,
HANDSHAKE - REABY);

IF NOT HANDSHAKE READY THEN (* FAS IS NOT READY *) -
FAS ERROR - CODE := FAS - ERROR - CODE + 1 - ELSE

(* FAS IS READY SO SEND DATA NOW *)
BEGIN

Write - Data - Byte To FAS(DATA TO FAS);
(*-SENDS DATE BYTE TO FAS AND

SETS HANDSHAKE BIT#1 (D1=1)
ADDRESS 105H TO TRUE *)

END ;

(* WAIT FOR FAS TO ACCEPT DATA *)
FAS - Handshake - Test(HANDSHAKE MASK,

EXPECTED BYTE VALUE,
HANDSHAKE - READY);

(* CHECK IF FAS HAS ACCEPTED DATA *)
IF NOT HANDSHAKE - READY THEN

BEGIN
FAS ERROR CODE := FAS ERROR CODE + 2;
Write Data Byte To FAS(ZER0S) ; - - - -

END ;
END ;

B-16

I

1

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(************** SENDS A STRING OF DATA TO THE FAS *********I
PROCEDURE Send - String - - To FAS(VAR

FAS ERROR - CODE :BYTE;

STRING - TO-FAS
VAR-

:STRING - 29);
VAR

COUNTER : BYTE:
BYTE VALUE OF STRING : BYTE; - - -

BEGIN
COUNTER := I:
WHILE (COUNTER <= LENGTH(STR1NG - - TO FAS))

AND
NOT A - FAS - ERROR - OCCURED(FAS - ERROR - CODE) DO

BEGIN
BYTE VALUE OF STRING := ORD(

Send - Byte - - To FAS(FAS ERROR CODE,

- - -
STRING TO - FAS[COUNTER]);

BYTE VALUE - - OF STRING);
COUNTER := COUNTER + i;

END :
END ;

B-17

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(*************** GET A DATA BYTE FROM THE FAS e* * * * * * * * * * * *)
PROCEDURE Get - Byte - From - FAS(VAR

FAS ERROR - CODE : BYTE;
DATA - READ : BYTE 1;
VAR-

CONST
HANDSHAKE MASK : BYTE = $01; (* 00000001 Do *)

*)
FAS - ADDRESS : INTEGER=$100; (* FAS DATA OUT *)

HANDSHAKE - READY : BOOLEAN;

EXPECTED BYTE - VALUE : BYTE = $01; (* WANT DO=^

VAR

BEGIN
(* DOES THE FAS HAVE DATA READY TO SEND *)

HANDSHAKE READY := FALSE;
FAS - HandsKake - Test(HANDSHAKE MASK,

EXPECTED BYTE VALUE,
HANDSHAKE - REA~Y);

IF NOT HANDSHAKE - READY THEN
FAS ERROR CODE := FAS ERROR CODE + 4;

IF NOT A - FAS ERROR OCCUREDTFAS ERROR CGDE) TEEN
T* FAS-NOW HAS DATA READY *)

Get - FAS - Hardware - Data(FAS ADDRESS,
DATK READ) ;

(* WILL SET Do=O AT 105H *)
END ;

B-18

i

,
I

I

I I
i

I

I:

I

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(****** 4.1 FAS CPU CAMERA TRIGGER ENABLE/DISABLE * * * * * * * I

PROCEDURE Set 4 FAS - Camera - Trigger Control(VAR

(* Plus the Global: FAS - TRIGGER - EiABLE - SAVE
FAS ERROR CODE : BYTE;
FAS-TRIGGER ENABLE : BOOLEAN);

: BOOLEAN *)

CONST
NORMAL - CONTROL - BYTE : BYTE = $09; (* 00001001 *)

BEGIN

FAS - ERROR - CODE := 010;

FAS - TRIGGER - ENABLE - SAVE := FAS - TRIGGER - ENABLE;
Set FAS Control Bits(N0RMAL CONTROL BYTE); - - - - -

END ;

B-19

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* Calling this procedure will cause the FAS to *)
(* override software and trigger the camera. *)

(****** 4.2 STD CPU CAMERA TRIGGER COMMAND **************I
PROCEDURE STD - CPU - Trigger - Camera-Command(VAR

FAS - ERROR - CODE : BYTE);

CONST
NORMAL CONTROL - BYTE : BYTE = $09; (* 00001001 *)
TRIGGER - BYTE : BYTE = $OD; (* 00001101 *)

BEGIN
FAS ERROR CODE := 020;
Set-FAS - - Control - Bits(TR1GGER-BYTE);
DELAY(20); (* PULSE WIDTH IS 20 mS *)
Set - FAS - Control - Bits(N0RMAL-CONTROL - BYTE);

DELAY(20); (* BETWEEN PULSES *)

Set - FAS - Control - Bits(TR1GGER - BYTE);

DELAY (20 ; (* PULSE WIDTH IS 20 mS *)
Set FAS - Control - Bits(N0RMAL - CONTROL - BYTE); -

END ;

B-20

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* This procedure will reset the FAS CPU. The user *)
(* must be aware that the FAS annotation mode now equals *)
(* 'B' and that the FAS camera trigger is enabled. *)

(****** 4 . 3 FAS CPU RESET COMMAND .

PROCEDURE FAS - CPU - Reset - Command(VAR
FAS - ERROR - CODE : BYTE);

CONST
NORMAL CONTROL BYTE : BYTE = $09; (* 00001001 *)
RESET - CPU - BYTE- : BYTE = $08; (* 00001000 *)

BEGIN
(* The FAS is RESET first *)

FAS ERROR CODE := 030;
Set-FAS - Czntrol - Bits(RESET - CPU - BYTE);
DELAY(10); (* PULSE WIDTH IS 10 mS *)

I Set FAS Control Bits(N0RMAL CONTROL BYTE); - - - - -
(* then the FAS is power up reset. *)

FAS POWER UP(FAS ERROR CODE); - - - -
END ;

B-21

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The hardware frame counter is read from the FAS *)
(* card and the value is returned in the variable *)
(* FAS HARDWARE - FRAME - COUNTER *) -
(****** 4 . 4 READ HARDWARE FRAME COUNTER *****************I
PROCEDURE Read-Hardware - Frame Counter(VAR

FAS ERROR CODE,
FAS-HARDWARE-FRAME - - COUNTER : BYTE);

CONST
FAS - FRAME - COUNTER - ADDRESS : INTEGER = $107;

BEGIN
FAS ERROR CODE := 0 4 0 ;
Get-FAS - - Hgrdware - Data(FAS FRAME COUNTER ADDRESS,

FAS-HARDWARE - - FRAME - COUNTER);

END ;

B-22

I (* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* Calling this procedure cause the hardware frame *)
(* counter to be reset *)

(****** 4.5 RESET HARDWARE FRAME COUNTER ****************I
PROCEDURE Reset - Hardware - Frame - Counter(VAR

FAS ERROR-CODE : BYTE);

CONST
1

1

NORMAL CONTROL BYTE : BYTE = $09; (* 00001001 *)
RESET - FRAME - COUNT - BYTE : BYTE = SOB; (* ooooioii *)

1 VAR
RESET - SOFTWARE - FRAME - CODE : BYTE;

BEGIN
FAS ERROR CODE := 050;
Set-FAS - - CGntrol - Bits (RESET - FRAME - COUNT - BYTE) ;
DELAY(10); (*PULSE WIDTH IS 10 mS *)

Set FAS Control Bits(N0RMAL CONTROL BYTE); - - - - -
RESET SOFTWARE FRAME CODE :=ORD(^W);
Send - Byte - To-FxS(FAS-ERROR CODE,

RESET - SOFTWARE - FRAME - CODE);

END :

B-23

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The user's program will set the variable * I
(* NEW FAS ANNOTATION MODE and call this procedure which *)
(* wilr verify that tEe mode is A, B, or C and update the *)
(* FAS. *)

(****** 4 . 6 SET FAS ANNOTATION MODE .
PROCEDURE Set - FAS - Annotation - Mode(VAR

FAS ERROR CODE : BYTE;

NEW - FAS - ANNOTATION - MODE : CHAR);
-

VAR-

VAR
SET ANNOTATION CODE : BYTE;
BYTE - VALUE - - OF MODE : BYTE;

BEGIN
FAS - ERROR CODE := 060;

IF NEW FAS - ANNOTATION - MODE IN ['A1,'B','C'] THEN
(* VERTFY MODE IS A, B, OR c *)

BEGTN
SET ANNOTATION CODE := ORD(^M);
Sena - Byte - - To FxS(FAS ERROR CODE,

SETANNOTATION CODE);
IF NOT A FAS - ERROR - O?CURED(FAS - ZRROR - CODE

ORD(NEW FAS ANNOTATION
BEGIN-

BYTE - VALUE - OF MODE :=

END ;
END

ELSE
FAS - ERROR - CODE

END ;

THEN

- MODE ;
Send - Byte - - To FAS(FzS ERROR CODE,

BYTE VALUE OF MODE); - - -

:= 066;

B-24

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(****** 4 . 7 GET LAST PHOTO "X" SWITCH DATA **************)
PROCEDURE Get - Last - Photo Data(VAR

FAS ERROR - CODE : BYTE;

LAST PHOTO X SWITCH - DATA : STRING - 28);
VAR-

- - -
VAR

GET TIME CODE : BYTE;
DATX REAE : BYTE;
COUNTER : BYTE;
LAST DATA : STRING 28; - -

BEGIN
FAS ERROR CODE := 070;
GET-TIME EODE := ORD("N);
IF EOT FAS - - Is Already-Sending - Data(FAS - ERROR - CODE)
THEN
BEGIN
Send Byte - - To FAS(FAS ERROR-CODE, -

GET-TIME CODE):
IF NOT A - FAS - Error - Oburea(FAS7ERROR - - CODE) THEN
BEGIN
COUNTER := 0;
LAST DATA := ' I .

REPEET I

BEGIN
COUNTER := COUNTER + 1;
Get - Byte From - FAS(FAS ERROR CODE,
IF NOT A FAS Error Occcred(FAS ERROR CODE)
THEN LAST - DATA[COUNTER]

DATE READT;
:= CHAE(DATA-READ); -

END ;
UNTIL (COUNTER >= 2 8)

OR
A - FAS - Error - Occured(FAS - ERROR-CODE);

END ;
END ;

IF NOT A - FAS - ERROR - OCCURED(FAS - ERROR - CODE)
THEN

LAST - PHOTO - - X SWITCH - DATA := LAST - DATA;
END :

B-25

END ;

(* WILL SEND CONTROL CODE *)
(* FOLLOWED BY THE TEXT THEN*)
(* PAD WITH SPACES TO *)
(* MAKE STRING TO FAS *)
(* EXACTLY 29 CHA~CTERS *)

STRTNG - - TO-FAS);
Send String - - To FAS(FAS ERROR CODE, -

END ;

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* A text string, TEXT TO FAS, is sent to the FAS *)
(* unless the text string contains undefined characters *)
(* outside the range of 20h to 5Ah, TO 'Z'.

PROCEDURE Send - Text - - To FAS(VAR
(****** 4 . 8 SEND ANNOTATION TEXT TO FAS *****************)

FAS ERROR - CODE : BYTE;

TEXT - TO-FAS : STRING - 2 8) ;
VAR-

VAR
COUNTER : BYTE;
STRING - - TO FAS : STRING - 29;

BEGIN
FAS ERROR - CODE := 080;

REPEAT
COUKTER := 0;

COUNTER := COUNTER + 1;
IF ((TEXT - - TO FAS[COUNTER]) <)

((TEXT-TO-FAS[COUNTER]) > ' Z ')
OR

THEN
FAS - ERROR - CODE := 086;

UNTIL (COUNTER >= LENGTH(TEXT TO FAS)) - -
OR

A FAS ERROR OCCURED(FAS ERROR CODE);
IF NOT A-FAS-ERROR-OCCURED(FAS-ERROR-CODE) - - - - -

THEN
BEGIN

:= ^O + TEXT TO FAS + - - STRING - - TO FAS
I I .

I

B-26

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The variable NEW GMT which is set by the user's *)
*) (* program is error checEed and sent to the FAS.

FAS ERROR - CODE : BYTE;
VAR-
NEW - GMT : STRING 9);

VAR (* DHHMMS~SS *)
STRING TO FAS : STRING - 29;
BINARY-VAEUE : BYTE;
COUNTER : BYTE;
TENS : BYTE;
UNITS : BYTE;
ADAPTED NEW GMT : STRING 10;
TENS DIEIT : BYTE;
UNITS DIGIT : BYTE;
DECIMAL - VALUE : BYTE;

- -

BEGIN
FAS ERROR-CODE := 090; STRTNG TO FAS := ^p + ' 1 . - -

(* CONVERT 'OD', 'HH', ' M M ' , 'SS', AND 'SS' TO BINARY *)
(* AND MOVE INTO STRING TO FAS POSITION; UPON ERROR, *)
(* SET FAS ERROR CODE AED EXIT.
ADAPTED NEW GMT-
COUNTER- := 1;

*)
:= '0' + NEW GMT; - -

REPEAT
BEGIN

COUNTER := COUNTER + 1; (*NEXT BYTE *)
TENS := COUNTER * 2 - 3;
UNITS := COUNTER * 2 - 2;
TENS DIGIT := BYTE(ADAPTED NEW GMT[TENS])

UNITS DIGIT:= BYTE(ADAPTED NEW GMT[UNITS])

- - - - $ 3 0 ;

- $ 3 0 ;
- - -

IF (TENS DIGIT > 9) OR (UNITS DIGIT >9) - -
THEN

FAS ERROR CODE := 095 - -
ELSE

BEGIN
DECIMAL VALUE := TENS DIGIT * 10
CASE COUNTER OF
3 : IF DECIMAL VALUE > 23 THEN

- + UNITS DIGIT; -

FAS ERR~R CODE := 095;

FAS ERR~R CODE := 095;
4 : IF DECIMAL VZLUE > 59 THEN
5 : IF DECYMAL VALUE > 59 THEN

FAS ERRER CODE := 095; - -
END ;

B-27

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

END ;
IF NOT A - FAS - ERROR - OCCURED(FAS - ERROR - CODE)
THEN

STRING TO FAS[COUNTER] :=
C H A R ~ T E ~ ~ S - DIGIT * 10 + UNITS - DIGIT);

END ;
UNTIL (COUNTER >= 6) OR (FAS ERROR CODE = 095);
IF NOT A - FAS - ERROR - OCCURED(FAS - ERROR - FODE)
THEN

Send - String - - To FAS(FAS ERROR CODE,
STRTNG - - TO-FAS);

END ;

B-28

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(*

(****** 4.10
PROCEDURE Start FAS Clock(VAR

*) This procedure starts the GMT clock running

"GO" COMMAND TO START THE CLOCK *************)
- -

VAR
FAS ERROR CODE : BYTE); - -

START - CLOCK - CODE : BYTE;

BEGIN
FAS ERROR CODE := 100;
STAFT CLOFK CODE := ORD(^G);
Send Byte TG FAS(FAS ERROR CODE, - - - START CLOCK CODE); - -

END ;

B-29

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The two variables, NUMBER OF PHOTOS - - TO TAKE and *)
(* INTERVAL BETWEEN PHOTOS, set by the user's program are *)
(* error ch&k and sent to the FAS. * I

(****** 4.11 SET INTERVALOMETER PARAMETERS ***************I
PROCEDURE Set - Intervalometer(VAR

FAS ERROR - CODE : BYTE;

NUMBER OF PHOTOS TO TAKE : BYTE;
VAR
INTERVAL - BETWEEN - PHOTOS : INTEGER);

VAR-
- - - -

VAR
SEND INTER - CODE : BYTE;
HIGH-BYTE : BYTE;
LOW - BYTE : BYTE;

BEGIN
FAS ERROR CODE := 110;
SEND - INTER CODE
IF (NUMBEE OF PHOTOS - - TO TAKE > 2 5 0)

:= ORD(*Q);
- -

OR

OR

OR

THEN

(NUMBER OF PHOTOS TO TAKE < 1)

(INTERVAL - BETWEEN - PHOTOS > 14400)

(INTERVAL - BETWEEN - PHOTOS < 1)

- - - -

FAS ERROR - CODE := 115;
HIGH BYTE- := BYTE(HI(1NTERVAL BETWEEN PHOTOS));
LOW - BYTE := BYTE(INTERVAL - BE~WEEN - PH~TOS);

IF NOT A - FAS - ERROR - OCCURED(FAS - ERROR - CODE)
THEN

Send - Byte - - To FAS(FAS ERROR CODE,
SEND INTER CODE);

IF NOT A - FAS - ERROR - OCCURED(FAS - ERROR - CODE)
THEN

Send Byte - - To FAS(FAS ERROR CODE, -
NUEBER O F PHOTOS TO-TAKE);

IF NOT A - FAS - ERROR - OCCURED(FAS-EREOR-CODE) -
THEN

Send - Byte - - To FAS(FAS ERROR CODE,
HIGE BYTET;

IF NOT A-FAS - ERROR - OCCURED(FAS - ERROR - CODE)
THEN

Send - Byte - - To FAS(FAS ERROR-CODE,
LOW-BYTE); -

END ;

B-30

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The FAS will begin taking automatic pictures *)

(****** 4.12 "GO" COMMAND TO START A PHOTO SEQUENCE*******)
PROCEDURE Start - Photo - Sequence(VAR
VAR

FAS ERROR CODE : BYTE); - -
START - PHOTO - SEQUENCE - CODE : BYTE;

BEGIN
FAS ERROR CODE := 120;
STAFT PHOTO SEQUENCE CODE
Send - Eyte - - TE FAS(FAS-ERROR CODE,

:= ORD(^R);

STAFT - PHOTO - SEQUENCE - CODE);
END ;

B-31

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The status of the FAS is returned in the variable *)
(* named FAS - STATUS - CODE. *)

(****** 4-13 FAS STATUS CODE TO STD .
PROCEDURE Get - FAS - Status(VAR

FAS ERROR CODE,
FAS-STATUE - - CODE : BYTE);

CONST
FAS - STATUS - CODE - ADDRESS : INTEGER = $104;

BEGIN
FAS ERROR CODE := 130;
Get-FAS - - Hardware - Data(FAS STATUS CODE ADDRESS,

FAS-STATUS-CODET; - -

END ;

B-32

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* This procedure will stop automatic pictures * I

(****** 4 . 1 4 CANCEL CURRENT PHOTO SEQUENCE ***************)
PROCEDURE Cancel Photo Sequence(VAR

VAR

- -
FAS ERROR CODE : BYTE); - -

CANCEL PHOTO SEQUENCE CODE : BYTE; - - -
BEGIN

FAS ERROR CODE := 140;

Send - Byte - - To-FAS(FAS ERROR CODE,
CANCEL PH~TO SEQUENCE CODE := ORD(^S);

CANCEL - PH~TO - SEQUENCE - c

END ;

DE);

B-33

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The TRUE value of boolean variable *)

(* about to-occur. *)
(* INTERVAL PRE WARNING FLAG indicates when a picture is *) -

(****** 4.15 INTERVAL PRE-WARNING FLAG
PROCEDURE Get - Photo - Pre - Warning Flag(VAR

FAS ERR~R - CODE
INTERVAL PRE WARNING FLAG : BOOLEAN);

: BYTE;
VAR-

- - -
CONST

FAS PRE WARNING ADDRESS : INTEGER = $103; - - -
VAR

PRE - WARNING - DATA - BYTE : BYTE;

BEGIN
FAS ERROR CODE := 150;
Get-FAS - - Hardware - Data(FAS PRE WARNING ADDRESS,

PRE-WARNING - - DATA - BYTE);
INTERVAL PRE WARNING FLAG := - (PRE - WARNTNG - DATA - BYTE AND $01) = $01;

END :

B-34

t

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

t

(* The TRUE value the variable *)
(* *)
(* taken. *)

PHOTO - CONFIRMATION - FLAG indicated that a photo was

I

(****** 4.16 PHOTO CONFIRMATION TO STD *******************I
PROCEDURE Get - Photo - Confirmation Flag(VAR

FAS ERROE - CODE
PHOTO - CONFIRMATION - FLAG : BOOLEAN);

: BYTE;
VAR-

CONST
FAS - PRE - WARNING - ADDRESS : INTEGER = $102;

VAR
PHOTO - CONF - DATA - BYTE : BYTE;

BEGIN
FAS ERROR CODE := 160;
Get-FAS - - Hzrdware - Data(FAS PRE WARNING ADDRESS,

PHOTO - CONF - DATA-BYTE - ;

PHOTO - CONFIRMATION FLAG :=
(PHOTO-FONF - DATA - BYTE AND $01) = $01;

END ;

B-35

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The NUMBER - - OF PHOTOS - TAKEN sofar is reported * I

(****** 4.17 PHOTO COUNT IN THIS SEQUENCE ****************)
PROCEDURE Get - Photo-Count(VAR

FAS ERROR - CODE : BYTE;

NUMBER - - OF PHOTOS - TAKEN : BYTE);
VAR-

VAR
PHOTO COUNT - CODE : BYTE;
DATA - READ : BYTE;

BEGIN
FAS ERROR CODE := 170;

IF NOT FAS - - ys Already - Sending - Data(FAS - ERROR - CODE)
PHOTO COUNT CODE := ORD(^X);

THEN
Send - Byte - - To FAS(FAS ERROR CODE,

PHOTO COUET CODE);
IF NOT A - FAS - Error - Occured(FxS-ERR5R-CODE)
THEN

Get - Byte - From - FAS(FAS ERROR CODE,
DATX READT;

IF NOT A - FAS - Error - Occured(F% - ERROR - CODE)
THEN

NUMBER - - OF PHOTOS - TAKEN := DATA - READ;
END ;

B-36

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* Four bytes, FFh, OOh, AAh, and 55h, are sent to *)
(* the FAS and echoed back first on the status byte then *)
(* on the data byte read addresses. Any failure causes *)

*) (* an error reported by FAS - ERROR - CODE.
(****** 4.18 PERFORM FAS COMMUNICATION PORT TEST *********I
PROCEDURE Perform FAS - Communication - Test(VAR FAS-ERROR CODE

:BYTE)f

CONST

VAR
FAS - STATUS - ADDRESS :INTEGER = $104;

COMMUNICATION - TEST - CODE : BYTE;

TE s T-CHAR : BYTE:
COUNTER : BYTE;
FAS STATUS CODE : BYTE;
DATX READ : BYTE;

: STRING 4; TEST CASES -

-
-

BEGIN
FAS ERROR CODE := 180;

Send Byte To FAS(FAS ERROR CODE,
COMNICATION TEST CODE := ORD(^Y);

(* BEGIN SENDING TEST PATTER% * I
- - -

COfiUNICA?;ION TEST-CODE);

TEST CASES := CHAR($FF)+CHAR($OO)+CHAR($AA)+CHAR($55);

IF NOT A FAS ERROR OCCURED(FAS ERROR CODE)
COUNTER := 0;

- - - - -
THEN

REPEAT
COUNTER := COUNTER + 1;
TEST CHAR := BYTE(TEST CASES[COUNTER] 1;
Send-Byte To FAS(FAS ERROR CODE, - - - TEST CHART;
IF NOT A FAS ERROR OCEURED(FAS ERROR CODE) - - - - -
THEN

BEGIN
DELAY(100); (* WAIT FOR FAS *)
Get FAS Hardware Data(

IF ((TEST CHAR A ~ D $DF)-<>

- -
FAS-STATUS ADDRESS,
FAS-STATUS-CODE);

 FA^ STATUS CODE AND $DF)) - -
THEN

FAS ERROR CODE :=187

Get Byte From FAS(FAS ERROR CODE,

-
ELSE BEGIN

IF NOT A FAS ERROR OCC~RED(
- - - DATA READT;

- -
FAS ERROR CODE) - -

AND
(TEST CHAR <> DATA READ) - -

B-37

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

THEN
FAS - ERROR - CODE := 188

END ;
END ;

UNTIL

OR
(COUNTER >= 4)

A FAS - ERROR - OCCURED(FAS - ERROR - CODE); -
END :

B-38

I

Miletus Associates, Inc. STD to FAS Unit Procedures *)

This procedure causes the FAS to perform the test *)
specified by the FAS HARDWARE TEST variable set by the *) - -
user's program: *)
FAS - HARDWARE - TEST value TEST PREFORMED *)

A All tests *)
C CPU self check only * I
E EPROM check sum verify *)
R RAM tested *)

*)
The FAS HARDWARE TEST FLAG returns a true value *)

when the haydware test is-finished. The results of *)
these tests are available from the status byte reported*)
by procedure FAS413. *)

IF the FAS HARDWARE TEST FLAG returns a false value *)
then the FAS ERROR CODE must be examined to determine *)

where the test faiied. * I
(****** 4.19 PERFORM FAS HARDWARE SELF TEST **************I
PROCEDURE Perform FAS Hardware Test(VAR - -

FAS ERROR - CODE : BYTE;

FAS HARDWARE TEST : CHAR;

FAS HARDWARE TEST FLAG : BOOLEAN);

VAR-

VAR-
-

- - -
VAR

SELF TEST CODE : BYTE;

DATA-READ - : BYTE;
BYTE-VALUE OF TEST : BYTE; - -

BEGIN
FAS ERROR CODE := 190;
FAS-HARDW~RE TEST - FLAG
SELF - TEST - COEE

:= FALSE;
:= ORD(^T);

(* VERIFY TEST IS A, C, E,OR R *)
IF FAS HARDWARE - TEST IN ['A','C','E','R']
THEN-
BEGIN

IF NOT FAS Is Already Sending Data(FAS ERROR CODE)

SELF TEST-CODE);

- - - - - -
THEN

Send Byte To FAS(FAS ERROR CODE,

IF NOT A FAS ERROR OCCUREDTFAS ERROR CODE)
- - -

- - - - -
THEN
BEGIN

BYTE VALUE OF TEST :=

Send Byte To FAS(FAS ERRoR CODE,

IF NOT A FAS ERROR OCFURED(FAS-ERROR CODE)

- - -
ORD(FAS HARDWARE TEST); -

- - - BYTE VALUE OF TEST);
- - - - -

THEN
Get Byte From FAS(FAS ERROR CODE, - - - - -

B-39

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

DATA READ) ;
IF NOT A - FAS - Error - Occured(FAS - ERROR - CODE)
THEN

FAS - HARDWARE - TEST - FLAG := TRUE;
END :

END
ELSE
FAS - ERROR - CODE := 196;

END ;

B-40

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* This procedure sets the variable *)
(* REPORTED - ANNOTATION - MODE to the current FAS's value *)

(****** 4.20 REPORT ANNOTATION MODE TO STD ***************I
PROCEDURE Report Annotation Mode(VAR

: BYTE;
- -

FAS ERROR CODE -
VAR-

VAR
REPORTED ANNOTATION MODE : CHAR); - -

REPORT MODE - CODE : BYTE;
DATA - READ : BYTE;

BEGIN
FAS ERROR CODE := 200;
REPERT MOEE CODE := ORD(^U);
IF NOT-FAS I s Already Sending Data(FAS ERROR CODE) - - - - - -
THEN

Send Byte To FAS(FAS ERROR CODE, - - - REPERT MOEE CODE);
IF NOT A FAS Error Occured(FA5 ERRoR CODE) - - - - -
THEN

Get-Byte From FAS(FAS ERROR CODE, - - DATA READT;
IF NOT A FAS Error Occured(FAS-ERROR CODE) - - - -
THEN

REPORTED ANNOTATION MODE := CHAR(DATA READ); - - -
END ;

B-41

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The time (in intervals of 1/4 seconds) before the *)

*)
(* next automatic photo is reported in the variable *)
(* named REPORTED-TIME - TO-NEXT-PHOTO.

(****** 4.21 REPORT TIME LEFT TO NEXT SCHEDULED PHOTO ****I
PROCEDURE Report - Time - To-Next-Photo(VAR

FAS ERROR CODE : BYTE;

REPORTED - TIME - - TO NEXT - PHOTO : INTEGER);
-

VAR-

VAR
TIME LEFT CODE : BYTE;
HIGH-BYTE- : BYTE;
LOW - BYTE : BYTE;

BEGIN
FAS ERROR CODE := 210;
TIME LEFT-CODE := ORD("V);
IF NOT FA5 - - Is Already - Sending - Data(FAS - ERROR - CODE)
THEN

Send - Byte - - To FAS(FAS ERROR-CODE,
TIME LEFT CODE) ;

IF NOT A-FAS - Error - Occured(FAS - ERROR - CODE)
THEN

Get - Byte - From - FAS(FAS ERROR CODE,
HIGE BYTET;

IF NOT A-FAS-Error - Occured(Fk - ERROR - CODE)
THEN

Get - Byte - From - FAS(FAS-ERROR CODE,
LOW BYTE)f

IF NOT A - FAS - Error - Occured(gAS - ERROR - CODE)
THEN

REPORTED TIME TO NEXT - PHOTO := - - -
HIGH BYTE * 256 + LOW - BYTE; -

END ;

B-42

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(*******4.22 Load the FAS software frame counter *********I

PROCEDURE Load - the - FAS - software - frame - count(VAR
FAS ERROR CODE,

:BYTE);
NEW-FRAME-COUNT - -

VAR
: STRING 29; STRING - - TO FAS -

BEGIN
FAS ERROR CODE := 220;
IF TNEW-F~E - COUNT >= o
AND
(NEW-FRAME - COUNT <= 250 THEN
BEGIN

STRING TO FAS := ^H + CHAR(NEW FRAME - COUNT);
Send - StriEg - - to FAS(FAS ERROR-CEDE,

STRINE - - TO FAS);
END

FAS - ERROR - CODE := 225;
ELSE

END ;

B-43

(* Miletus Associates, Inc. STD to FAS Unit Procedures *)

(* The FAS clock calibration procedure should be *)
(* commented out after testing is completed so that no *)
(* accidental call will cause problems. *)

BEGIN
FAS ERROR CODE - - := 250;

(* expand this comment to then END after testing

Send - Byte-To - - FAS(FAS ERROR-CODE,

DELAY COUNTER := 0;

*)

CALIBRATE CODE := ORD(^I);

CAL~BRATE-CODE);

REPEAT
DELAY(10); (* WAIT lOmS *)
IF KEYPRESSED
THEN

ELSE
DELAY - COUNTER := 18001

DELAY - COUNTER := DELAY - COUNTER + 1;

(DELAY - COUNTER > 18000 1;
UNTIL

FAS - CPU - Reset - Command(FAS - ERROR - CODE);
(* Place closing comment marker here after testing. *)

END ;
END.

B-44

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)
{ SR- 1 {Range checking off)
ESB+l {Boolean complete evaluation on}
{SS+l {Stack checking on}
{$I+) {I/O checking on}
{ SN- 1 {No numeric coprocessor)
{SM 65500,16384,655360) {Turbo 3 default stack and heap)

.

.
(* * * ***)
(* * * FAS AND STD TEST PROCEDURES ***)
(*** REVISION 2.0 ***)
(*** ***)
(*** BY: TOM CAVALLI ***)
(* * * JUNE 1988 ***)
(* * * LAST MODIFIED:13 MARCH 1989 ***)
(*** FILENAME: FASTEST.TP5 ***)
(* * * ***)
(*** * * *)
(*** 13 MARCH 89: CHANGED INITVAR TO SHOW POWERUP ***)
(*** FAS TRIGGER ENABLE := TRUE ***)
(*** ***)
(* * * 13 MARCH 89: CHANGED NUMBER OF PHOTOS TO TAKE ***)
(*** TO BE ONLY A BYTETYPE VXRIXBLE ***) .
.

- -

PROGRAM FASTEST:

Uses Crt, FASSTD20;

B-45

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(*********SUGGESTED FAS PASCAL TYPE DECLARATIONS***********)
(* * * All type declarations are defined in ***)
(* ** the unit FASSTD2O. ***)

(*****SUGGESTED FAS PASCAL GLOBAL VARIABLE DECLARATION*****)
(*** THE FOLLOWING PASCAL PROCEDURES REQUIRE * *)
(* * * PARAMETERS THAT EITHER CHANGE THE FAS OR ** 1
(* * * RETURN THE REQUESTED VALUE.
(*** THE IDENTIFIERS LISTED HERE MAY BE
(* * * THE PARAMETERS FOR THOSE PROCEDURE
(* * * Of course these variables can
(* * * and used as local variables. They
(*** listed here f o r reference.

VAR

FAS ERROR CODE FAS-ERRORINUMBER
FAS-ERROR CALLER
FAS-TRIGGER ENABLE
NEW-FAS ANNOTATION-MODE
LAST PHETO x SWITCH - DATA
TEXT-TO FAS -
NEW GMT-
NUMBER OF PHOTOS TO TAKE
INTERVXL BETWEEN-PH~TOS -
FAS STATUS CODE
INTERVAL PEE WARNING FLAG
PHOTO CONFIGTION FEAG
NUMBER OF PHOTOS - TEKEN
NEW FRZME-COUNT
FAS-HARDWARE TEST
FAS-HARDWARE-TEST FLAG
REPERTED ANNETATIEN MODE
REPORTED-TIME - - - TO NEZT - PHOTO

FASHARDWARE FRAME COUNTER

: BYTE;
: BYTE;
: BYTE;
: BOOLEAN;
: BYTE:
: CHAR;
: STRING 28;
: STRING-28;

: BYTE;
: INTEGER;
: BYTE;
: BOOLEAN:
: BOOLEAN:
: BYTE;
: BYTE:
: CHAR;
: BOOLEAN:
: CHAR:
: INTEGER:

: STRING^; -

(* STD*)

(* STD*)

(* STD*)
(* STD*
(* STD*)
(* STD* 1

(*FAS *)

(*FAS * I

(*FAS *)
(*FAS *)
(*FAS *)
(*FAS *)

(*FAS *)
(*FAS *)
(*FAS *)

(* STD*)
(* STD*

** 1
USED AS ** 1
CALLS. ** 1
be defined * *)
have been * *)

** 1
(* WHO *)
(*DEFINES*)
(*FAS *)
(*FAS *)
(*FAS *)

(**********FASTEST TURBO PASCAL DECLARATIONS***************)
KEY : CHAR; (* ONE KEYBOARD CHAR *)
MENUKEY : CHAR: (* MENU SELECTION *)
DYNAMIC : BOOLEAN; (* CONTINOUS STATUS CHECK *)

B-46

I
I

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

1

I

(***************CLEAR AND PAINT SCREEN***************)
PROCEDURE PAINTSCREEN;
BEGIN

CLRSCR;
WRITELN(' MILETUS ASSOCIATES, INC. I

WRITELN('A 4.1 FAS CPU CAMERA TRIGGER ENABLED ='I;
WRITELN('B 4.2 STD CPU CAMERA TRIGGER COMMAND');
WRITELN('C 4.3 FAS CPU RESET COMMAND');
WRITELN('D 4.4 READ HARDWARE FRAME COUNTER = ' I ;
WRITELN('E 4.5 RESET HARDWARE FRAME COUNTER I I

WRITELN('F 4.6 SET FAS ANNOTATION MODE = ' I ;

' F A S T O S T D TEST PkOGRAM' 1,;

'W 4.22 LOAD FRAME COUNT =' 1;

WRITELN('G 4.7 SEND LAST PHOTO "X" SWITCH =') ;
WRITELN('H 4.8 SEND TEXT TO FAS =I) ;
WRITELN('1 4.9 SET GMT = ' I ;
WRITELN('J 4.10 START CLOCK');
WRITELN('K 4.11 SET INTERVALOMETER PARAMETERS,',

000 PHOTOS AT 00000 INTERVALS');
WRITELN('L 4.12 START PHOTO SEQUENCE');
WRITELN('M 4.13 FAS STATUS CODE TO STD:',

WRITELN('N 4.14 CANCEL CURRENT PHOTO SEQUENCE');

WRITELN('P 4.16 PHOTO CONFIRMATION TO STD = ' I ;
WRITELN('Q 4.17 PHOTO COUNT THIS SEQUENCE = ' I ;

I MODE = , RESET = , CARD = , CAMERA = ' I ;

WRITELN('0 4.15 INTERVAL PRE-WARNING FLAG = I) ;

WRITELNVR 4.18 PERFORM FAS COMMUNICATION PORT',

WRITELN~T 4.20 REPORT ANNOTATION MODE TO STD = I) ;

' TEST');
WRITELN('S 4.19 REQUEST FAS HARDWARE SELF TEST = ' I ;

WRITELN('U 4.21 REPORT TIME REMAINING TILL NEXT',

WRITELN (LAST FAS ROUTINE CALLED = I ,

' SCHEDULED PHOTO =I) ;

I FAS ERROR CODE ='I;

I (Z TO EXIT, Y STATIC , V TO CALIB.)'); WRITELNVENTER YOUR LETTER SELECTION = I ,

END ;

I

B-47

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(***********INITIALIZE THE VARIABLES*********)
PROCEDURE INITVAR;
BEGIN

DYNAMIC := FALSE:

(* NEW FAS ANNOTATION MODE is set to the power *)

(* control of the STD, simulated by this menu *)
(* program, are set to what the operator enters*)

(* up value. All oth& variables under the *)

(* in responsed to the menu item selected. * I
a - IBl. .- NEW FAS - ANNOTATION - MODE -

(* 13 MARCH 89: IN ADDITION, FAS TRIGGER ENABLE*)
(* MUST BE SET TO THE POWER UP EfABLED VZLUE *)
(* IN ORDER FOR THE FAS TEST MENU TO SHOW TRUE *)

FAS - TRIGGER - ENABLE := TRUE;

END :

B-48

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(******************CHANGE FAS TRIGGER************)

PROCEDURE CHFTRIG;

BEGIN

GOTOXY(43,2);

WRITE('ENTER: T or F = ' 1 ;

REPEAT UNTIL KEYPRESSED;

KEY := READKEY;

FAS TRIGGER ENABLE := (KEY = 'T') ; - -
(* CALL FAS PROCEDURE HERE*)

Set FAS Camera Trigger Control(FAS ERROR CODE, - - - - FAS-TRIGGER ENABLE); - -
END ;

B-49

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHSTRIG;

BEGIN

(* CALL FAS PROCEDURE HERE*)
STD - CPU - Trigger - Camera - Command(FAS - ERROR - CODE);

END ;

B-50

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFRESET;

BEGIN

(* CALL FAS PROCEDURE HERE*)
FAS CPU Reset Command(FAS - ERROR - CODE); - - -

(* DOES THIS RESET THE ANNOTATION MODE TO B? and *)
(* ENABLE THE FAS CAMERA CONTROL? YES, IT does. So: * I

NEW FAS ANNOTATION MODE := 'B'; - - -
END ;

B-51

(* Miletus A s s o c i a t e s , Inc . FAS T e s t i n g PROCEDURES *)

PROCEDURE CHFFCNT;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Read - H a r d w a r e - F r a m e - C o u n t e r (F A S ERROR CODE,

FAS-HARDWARE - - FRAME - COUNTER);

G O T O X Y (4 0 , 5) ;

CLREOL;

WRITE (FAS HARDWARE FRAME COUNTER 1 ; - - -
END ;

B-52

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFFRESET;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Reset - Hardware - Frame - Counter(FAS - ERROR - CODE);

END ;

B-53

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFMODE;

BEGIN

GOTOXY (36,7 ;

WRITE('ENTER: A, B, or C');

REPEAT UNTIL KEYPRESSED;

KEY := READKEY;

GOTOXY(36,7):

WRITE(KEY,' ' 1 ;

NEW - FAS - ANNOTATION - MODE := KEY:

(* CALL FAS PROCEDURE HERE*)
Set - FAS - Annotation - Mode(FAS ERROR CODE,

NEW-FAS - - AKNOTATION - MODE);

END ;

B-54

PROCEDURE CHFX;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Get - Last - Photo - Data(FAS ERROR CODE,

LAZT - PHOFO - - X SWITCH - DATA);

CLREOL ;

WRITE(LAST - PHOTO - - X SWITCH - DATA);

END ;

B-55

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFTEXT;
VAR

CHAR - POSITION : BYTE;

BEGIN
GOTOXY(43,9);
CLREOL;
CASE NEW - FAS - ANNOTATION MODE OF

: TEXT TO-FAS := - - 'A'

'B' : TEXT TO FAS := '1234567890123456';
'C' : TEXT-TO-FAS - - := '1234567890123456789';

'1234567890123456789012345678';

END ;
wRITE(TEXT TO FAS);
GOTOXY(43,y) ;-
CHAR POSITION := 0;
REPEXT

BEGIN
REPEAT UNTIL KEYPRESSED;
KEY := READKEY;
CHAR POSITION := CHAR - POSITION + 1;
CASEKEY OF

(* CR *) *M : CHAR POSITION := 30;
(* BS *) ^H : CHAR-POSITION - :=

CHAR POSITION - 2;
KEY ;

' I . . '2' : TEXT - - TO FASCCHAR-POSITION] - :=

END ;
IF CHAR POSITION >= 0

THEN-
WRITE(KEY)

CHAR - POSITION := 0;
ELSE

END :
UNTIL CHAR POSITION >= LENGTH(TEXT TO FAS); - - -

(* CALL FAS PROCEDURE HERE*)
Send Text To FAS(FAS ERROR CODE, TEXT TO FAS); - - - - - - -

END ;

B-56

(* Miletus Associates, h c . FAS Testing PROCEDURES *)

(*****************SET GMT TIME*****************************)

PROCEDURE CHFGMT;

BEGIN

GOTOXY(20,lO);

CLREOL;

WRITE('DHHMMSSSS');

GOTOXY(20,lO);

READLN(NEW GMT); -
(* CALL FAS PROCEDURE HERE*)

Set GMT(FAS ERROR CODE, NEW GMT); - - - -
END ;

B-57

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFGOCLK;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Start FAS Clock(FAS ERROR CODE); - - - -

END :

B-58

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFINTER;

VAR
NUM - TEMP : INTEGER;

BEGIN

NUM - TEMP := 300; (* SOME NUMBER > 255, A MAX BYTE VALUE*)

WHILE ((NUM - TEMP < 0)
OR
(NUM - TEMP >255)) DO

BEGIN

GOTOXY(41,12);

READLN(NUM TEMP); -
END ;

NUMBER - - OF PHOTOS-TO - TAKE := BYTE(NUM-TEMP);

GOTOXY(56,12);

WRITE(I I) ;

GOTOXY(56,12);

READLN(1NTERVAL BETWEEN PHOTOS); - -
(* CALL FAS PROCEDURE HERE*)

Set - Intervalometer(FAS ERROR CODE,
NUMBER OF-PHOTOS TO TAKE,

, INTERV~L - ZETWEEN-PH~TOS); -

END ;

B-59

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFGOPHOTO;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Start - Photo - Sequence(FAS - ERROR-CODE);

END ;

B-60

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFSTATUS;

VAR
REAL STATUS : BYTE;
TEMP- : BYTE; (* USED IN MATH *)

BEGIN

(* CALL FAS PROCEDURE HERE*)
Get - FAS - Status(FAS - ERROR - CODE, FAS - STATUS - CODE);

END ;

TEMP := FAS STATUS CODE;
REAL STATUS
GOTOzY(34,14);
CLREOL ;

:= TEMF DIV 6z;

WRITE('M0DE = ' 1 ;
CASE REAL STATUS OF

o : KRITE(IA, 1);
1 : WRITE('B, I) ;

2 : WRITE(IC, I) ;

3 : WRITE('?, I) ;

END ;
:= TEMP - (REAL STATUS * 64); TEMP

REAL STATUS := TEMP DIV 32;
TEMP- := TEMP - (REAL STATUS * 32);
REAL STATUS

TEMP
WRITE('CAMERA = ',TEMP);

-

WRITE('RESET = 1 ,REAL STATUS:' , I) ;

WRITWCARD = ',REAL STATUS,', 1 1 ;
:= TEMP DIV 4;

:= TEMP-- (REAL STATUS * 4); -

B-61

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(*****************CANCEL CURRENT PHOTO SEQUENCE************)

PROCEDURE CHFSTOPPHOTO;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Cancel - Photo - Sequence(FAS - ERROR - CODE);

END ;

B-62

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(*****************INTERVAL PRE-WARNING FLAG****************)

PROCEDURE CHFPREPHOTO;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Get - Photo - Pre - Warning - Flag(FAS ERROR CODE,

GOTOXY(38,16);

CLREOL;

IF NOT INTERVAL PRE WARNING - FLAG THEN WRITE('N0 ' 1 ;

WRITE('PHOT0 PENDING ' 1 ;

INTERVAL - FRE - WARNING-FLAG);

- -

END ;

B-63

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFCONPHOTO;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Get - Photo - Confirmation - Flag(FAS ERROR CODE,

PHOTO - CONFIRMATION-FLAG);

CLREOL;

IF PHOTO CONFIRMATION FLAG THEN - -
WRITE('SUCCESSFUL PHOTO TAKEN')

ELSE

WRITE('N0 PHOTO TAKEN ' 1:

END ;

B-64

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(*****************PHOTO COUNT THIS SEQUENCE****************)

PROCEDURE CHFPHOTOCNT;

BEGIN

(* CALL FAS PROCEDURE*)
Get Photo Count(FAS ERROR CODE, NUMBER OF PHOTOS TAKEN);

GOTOXY(38,18);

- - - - - - -

WRITE(I I) ;

GOTOXY(38,18);

WRITE(NUMBER OF PHOTOS TAKEN); - - -
END ;

B-6 5

I

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFPORTTEST;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Perform - FAS - Communication - Test(FAS - ERROR - CODE);

END ;

B-66

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(*****************REQUEST FAS HARDWARE SELF TEST***********)

PROCEDURE CHFHARDTEST;

BEGIN
GOTOXY(43,20);
CLREOL;
WRITE('ENTER A, E, R, OR C = ' I ;
REPEAT UNTIL KEYPRESSED;
KEY := READKEY;
GOTOXY(43,20);
CLREOL ;
WRITE(KEY,' has ' 1 ;
FAS HARDWARE - TEST := KEY; -

(* CALL FAS PROCEDURE HERE*)
Perform - FAS - Hardware - Test(FAS ERROR CODE,

FAS-HARDWARE TEST,
FAS-HARDWARE-TEST - - - FLAG);

IF FAS HARDWARE TEST FLAG - -
THEN-

WRITE(' F I N I S H E D')

WRITE(' E R R 0 R E D 0 U TI);
ELSE

END ;

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFRPTMODE;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Report-Annotation-Mode(FAS ERROR CODE,

REP~RTED - XNNOTATION - MODE);
GOTOXY(42,21);

CLREOL;

WRITE(REP0RTED - ANNOTATION - MODE);

END ;

B-68

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(*****************REPORT TIME LEFT TO NEXT PHOTO***********)

PROCEDURE CHFNXPHOTO;

BEGIN

(* CALL FAS PROCEDURE HERE*)
Report Time To Next - Photo(FAS ERROR CODE,

GOTOXY(60,22);

CLREOL;

WRITE(REP0RTED TIME TO NEXT PHOTO);

- - -
REP~RTED TIME TO NEXT-PHOTO); - - -

- - - -
END ;

c- 2- B-69

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(*****************BEGIN CALIBRATION OF FAS CLOCK***********)

(* WARNING: THE CALIBRATION PROCEDURE BELOW PUTS THE FAS *)
(* INTO THE MODE NECESSARY TO ADJUST THE CAPACITOR WHICH *)
(* REGULATES THE CRYSTAL'S FREQUENCY. THE FAS CAN DO NO *)
(* OTHER FUNCTION ONCE SET IN THIS MODE; ONLY A FAS CPU *)
(* RESET (4 . 3) WILL RETURN THE FAS TO PROPER OPERATION. *)

(* PROCEDURE FAS Clock Calibration will do a RESET, 4.1. *)

PROCEDURE CHFCAL;

(* After a 3 minute timeout or key press, the *)

(* THEN THIS PROCEDUREWILL INITVAR AND DO A FAS POWER UP*)

VAR
CALIBRATE CODE : BYTE;
DELAY - COUNTER : INTEGER;

CLRSCR;
GOTOXY(20,8);
WRITE('C L 0 C K C A L I B R A T I O N M 0 D E');
GOTOXY(17,12);
WRITELN('The FAS will be reset, so all variables are lost!');
GOTOXY(20,14);
WRITELN('For the next 3 minutes, the FAS card can be');
GOTOXY (18,16 ;
WRITELN('ca1ibrated. Press any key to terminate earlier.');

BEGIN

(* CALL FAS PROCEDURE HERE *)
FAS - Clock - Calibration(FAS - ERROR - CODE);

PAINTSCREEN;
INITVAR;

(***FAS POWER UP***)
(* CALL FAS PROCEDURE HERE*)

FAS POWER - UP(FAS - ERROR - CODE);
END ;

B-70

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE CHFFRAMECNT;

VAR
NUM - TEMP :INTEGER;

BEGIN

NUM - TEMP := 300; (* SOME NUMBER > 255, A MAX BYTE VALUE*)

WHILE ((NUM - TEMP < 0)
OR
(NUM - TEMP >255)) DO

BEGIN

CLREOL ;

READLN(NUM TEMP); -
END ;

NEW FRAME COUNT

(* CALL FAS PROCEDURE HERE*)

:= BYTE(NUM TEMP); - - -

Load the FAS software frame count(FAS ERROR CODE, - - - - -
NEW-FRAME-COUNT); - -

END :

B-71

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(*****************TOGGLE DYNAMIC/STATIC MENU FLAG**********)

PROCEDURE DYNAMIC - STATIC - TOGGLE:

BEGIN

DYNAMIC := NOT DYNAMIC:

GOTOXY(50,24);

IF DYNAMIC THEN WRITE('DYNAM1C')

ELSE WRITE('STAT1C ' 1;

END :

B-72

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

PROCEDURE UPDATE SCREEN;
VAR

TEMP : BYTE;
BEGIN

GOTOXY(43,2);
CLREOL;

-

WRITE(FAS TRIGGER c ENABLE,' I) ;

GOTOXY(53723);
CLREOL;
Get Error Code Number(FAS ERROR CODE, TEMP); - - - WRITE (TEMP) ;
Get Error Code - Caller(FAS - ERROR - CODE, TEMP);
GOTcXY(31723);
WRITE('4.',TEMPt' ' 1 ;

END :

B-73

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

(***INITIALIZE***)
BEGIN

TEXTBACKGROUND(BLUE);
TEXTCOLOR(WHITE);
PAINTSCREEN;
INITVAR;

(***FAS POWER UP***)
(* CALL FAS PROCEDURE HERE*)

FAS POWER - UP(FAS - ERROR - CODE); -
(***MENU LOOP***)

WHILE MENUKEY<>'Z' DO
BEGIN

UPDATE SCREEN;
GOTOXYT31,24);
WRITE(' ' 1 ;
GOTOXY(31,24);
IF DYNAMIC THEN

ELSE
DELAY(SO0)

REPEAT UNTIL KEYPRESSED;
IF KEYPRESSED THEN

MENUKEY := READKEY

MENUKEY := ' * I ;

ELSE

WRITE(MENUKEY1;
CASE MENUKEY OF

'A'
'B'
'C'
'D'
'E'
IF'
'GI
'H'
'I'
' J'
'K'
'L'
'MI
IN'
'0'
'P'
'Q'
'R'
'S'
'T'
'U'
'V'
'W'

B-7 4

: CHFTRIG;
: CHSTRIG;
: CHFRESET;
: CHFFCNT;
: CHFFRESET;
: CHFMODE;
: CHFX;
: CHFTEXT;
: CHFGMT;
: CHFGOCLK;
: CHFINTER;
: CHFGOPHOTO;
: CHFSTATUS;
: CHFSTOPPHOTO;
: CHFPREPHOTO;
: CHFCONPHOTO;
: CHFPHOTOCNT;
: CHFPORTTEST;
: CHFHARDTEST;
: CHFRPTMODE;
: CHFNXPHOTO;
: CHFCAL;
: CHFFRAMECNT;

(* Miletus Associates, Inc. FAS Testing PROCEDURES *)

'Y' : DYNAMIC - STATIC - TOGGLE:
END :

B-7 5

X SWITCH +-
OUTPUT

W W I

L

STD
BUSS

IGNALS

t 5 v
D@-D7

A O - A l 5
I O R Q

WR
RD

t 15V

FROM EXPERIMENT
POWER SUPPLY >

I I 7

C4MER4 INTERF4CF
CIRCUITR r'

t I -

ADDRESS 1-7 LATCHES 1 I I DECODING

I I

' 1 '

.
POWER f t15V) 'I
TRIGGER
X SWITCH
ENCODER
HEAD .I

FAS CARD BLOCK DIAGRAM

FIGURE 1

c-3

H
n

c-4

irj
IT
3
IC

3
0
n

cn
LL
a

3
m
n
t- cn

a-

c3
a
a
H
0

c n Q m c LL.

a
a

n
t-
4

c-5

m
m
3 m
0
I-
m

m
CI)
3 m

m a
LL.

4
t-
4
CJI

H
n

C-6

ORIGINAL PAGE
BLACK AND WHI TE PHOTOGRAPH

Figure 5. Component Side of P.C. Board

Figure 6. Solder Side of P.C. Board

c-7

C-8

Figure 7. Test Set Up

Figure 8. Nikon F3 Camera (Front View)

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

@@!":?IAU PAGE
BLACK AND ~ J H I T E PHOTOGRAPH

Figure 9. Nikon F3 Front Cable Attachment

Figure 10. Nikon F3 Rear Cable Attachment

c-9

Figure 11. Nikon F3 Data Mask

c-10

ORIGfNAL PAGE
BLACK AND WHITE PHOTOGRAPH

I 1 I t I
I I I

Y

w
Ir

-;

1

1

2:I E-

CAb26R-238-39

I -- r /t

..
rn
w

0
0

c I

0 i i . .
- - 4 .

P

- - M u m CUASA Report Documentation Page
1. Repor(No. 2. Gowmmont Accession No.

NASA CR-185114
4. Title and Subtitle

f o r t h e purpose of obtaining photographs and d a t a at predefined t i m e intervals. The
single STD BUSS in te r face card has been designed in such a way as to allow it to b e

Film Annotation System for a Space Experiment

19. Security Classif. (of this r e m)

', Unclassified Unclassified
20. Security Classif. (of thm page)

7. Author(nj

W.R. Browne G S.S. Johnson

21. No of pages

121
22. Price'

0. Performing Organization Name and Address

Miletus Associates,, Inc.
3876 Hawkins NE
Albuquerque, NM 87109

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135

15. Supplementary Notea

3. Rocipient'r Catalog No.

5. Report Date

July 1989
6. Performing Organization C a k

8. Performing Organization Report No.

10. Work Unit NO.

11. Contract or Grant NO.

NAS3-25055
13. Type of Report and Period Covered

Flight Hardware Report
14. Sponsoring Agency W e

NASA Project Manager, Mr. G.A. Kraft , NASA Lewis Research Center
Telephone Number (216) 433-3932

-..-
16. Abstract

t
!

This control system also allows t h e exposure of twenty eight a l p h a h u m e r i c charac te rs
across t h e bot tom of each photograph. The d a t a contains such information as c a m e r a
identification, f r a m e count, user defined text , and t i m e to .01 seconds.

I

17. Key Words (Suggested by Autwsj) * 118. Distribution Statement

Film Annotation 'System
35mm C a m e r a
Intervalometer

Unclassified - Unlimited

